Descrizione del progetto
Impianti biomimetici con biostampa 3D in grado di rigenerare cartilagine e osso
La fabbricazione additiva, detta anche stampa 3D, ha rivoluzionato la produzione di prodotti complessi in molti campi. La tecnologia di biostampa 3D utilizza bioinchiostri con cellule viventi per produrre strutture 3D che imitano tessuti o organi naturali. Il progetto JointPrinting, finanziato dal Consiglio europeo della ricerca, utilizzerà la biostampa 3D per generare costrutti biomimetici anatomicamente accurati, che possono essere utilizzati per rigenerare sia la cartilagine che l’osso di un’articolazione malata. I costrutti integreranno un biomateriale carico di cellule staminali, un substrato polimerico stampato in 3D, componenti della matrice extracellulare della cartilagine, fattori di crescita condrogenici e il fattore di crescita endoteliale vascolare. Per determinare le caratteristiche strutturali ottimali si utilizzerà la modellizzazione a elementi finiti.
Obiettivo
Osteoarthritis (OA) is a serious disease of the joints affecting nearly 10% of the population worldwide. Realising an efficacious therapeutic solution for treating OA remains one of the greatest challenges in the field of orthopaedic medicine. This proposal envisions a future where 3D bioprinting systems located in hospitals will provide ‘off-the-shelf’, patient-specific biological implants to treat diseases such as OA. To realise this vision, this project will use 3D bioprinting to generate anatomically accurate, biomimetic constructs that can be used to regenerate both the cartilage and bone in a diseased joint. The first aim of this proposal is to print a mesenchymal stem cell laden biomaterial that is both immediately load bearing and can facilitate the regeneration of articular cartilage in vivo, such that the bioprinted construct will not require in vitro maturation prior to implantation. Mechanical function will be realised by integrating an interpenetrating network hydrogel into a 3D printed polymeric scaffold, while chondro-inductivity will be enhanced by the spatially-defined incorporation of cartilage extracellular matrix components and chondrogenic growth factors into the bioprinted construct. The second aim of the proposal is to use 3D bioprinting to create a cell-free, composite construct to facilitate regeneration of the bony region of a large osteochondral defect, where vascularization will be accelerated by immobilizing spatial gradients of vascular endothelial growth factor into the implant. The third aim of the proposal is to scale-up the proposed 3D bioprinted construct to enable whole joint regeneration. Finite element modelling will be used determine the optimal structural characteristics of the scaled-up implant for it to fulfil its required mechanical function. If successful, such an implant would form the basis of a truly transformative therapy for treating degenerative joint disease.
Campo scientifico
- medical and health sciencesmedical biotechnologycells technologiesstem cells
- engineering and technologymechanical engineeringmanufacturing engineeringadditive manufacturing
- engineering and technologyindustrial biotechnologybiomaterials
- medical and health sciencesmedical biotechnologyimplants
- natural sciencesmathematicsapplied mathematicsmathematical model
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
D02 CX56 DUBLIN 2
Irlanda