Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Force, Motion and Positioning of Microtubule Asters

Project description

A star is born: how microtubule asters exert forces to move and position themselves

Microtubules (MTs), tiny hollow tubes in the cytoplasm, play an essential role in nuclear positioning and spindle orientation, thereby subserving cell polarity, division and development. MT asters are arrays of MTs radiating from the centrosomes, which are the primary microtubule organising centres in animal cells. The European Research Council-funded FORCASTER project will study the mechanisms by which MT asters exert forces to move and position themselves in vivo. These forces are generated at extremely small distances and fast time scales by MT-associated motors from sites in the cytoplasm or at the cell surface. Using in vivo biophysical experiments, the team will study aster micromechanics during sea urchin development.

Objective

Cells must move and position internal components to perform their function. We here focus on the physical designs which allow microtubule (MT) asters to exert forces in order to move and position themselves in vivo. These are arrays of MTs radiating from the centrosome, which fill up large portions of cells. They orchestrate nuclear positioning and spindle orientation for polarity, division and development. Forces that move asters are generated at nanometer and second scales by MT-associated motors from sites in the cytoplasm or at the cell surface. How MTs and force-generators self-organize to control aster motion and position at millimeter and hour scales is not known. We will use a suit of biophysical experiments and models to address how aster micro-mechanics contribute to aster migration, centration, de-centration and orientation in a single in vivo system, using the early stages of Sea urchin development as a quantitative model.
We aim to: 1) Elucidate mechanisms that drive aster large-scale motion, using sperm aster migration after fertilization during which asters grow and move rapidly and persistently to the large-egg center. We will investigate how speeds and trajectories depend on boundary conditions and on the dynamic spatial organization of force-generators.
2) Implement magnetic-based subcellular force measurements of MT asters. We will use this to understand how single force-events are integrated at the scale of asters, how global forces may evolve will aster size, shape, in centration and de-centration processes, using various stages of development, and cell manipulation; and to compute aster friction.
3) Couple computational models and 3D imaging to understand and predict stereotyped division patterns driven by subsequent aster positioning and aster-pairs orientation in the early divisions of Sea urchin embryos and in other tissues.
This framework bridging multiple scales will bring unprecedented insights on the physics of living active matter.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-CoG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 199 310,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 199 310,00

Beneficiaries (1)

My booklet 0 0