Objectif
The last decade has seen remarkable progress in the study of growth in infinite families of groups. The main approach has its roots in additive combinatorics, but has truly given fruit in a non-commutative context. It is becoming clear that the central role is played not by groups in isolation, but by actions of groups. It is from this perspective that my plan addresses, at the same time, questions on growth in groups as such and hard problems in analytic number theory.
While this line of research on growth started with the study of matrix groups, it has now given strong results on permutation groups as well. Two outstanding matters are the control of dependence on rank in matrix groups, and the removal of the need for the Classification Theorem in permutation groups. Going beyond these questions on diameter and expansion, there are at least three new directions I propose to follow: towards algorithms, towards geometric group theory, and towards number theory.
Some of the main recent results in the area take the form of diameter bounds. Bounding a diameter amounts to showing that one can express any element of a group as a short product of generators. One of the main algorithmic questions consists in actually finding such an expression, and doing so rapidly. Links between geometric group theory (which studies growth in infinite groups) and the new combinatorial techniques ought to become stronger. Sofic and hyperlinear groups -- which arose in part from geometric group theory -- seem to invite a combinatorial approach.
Additive combinatorics has already shown its relevance to exponential sums, a key subject in analytic number theory. Can a newer perspective based on actions of groups give more general results? Short Kloosterman sums, which are particularly hard to bound, can be framed as a test case.
I also plan to pursue related interests in automorphic forms - which are a classical example of the relevance of group actions to number theory - and model theory.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes logique mathématique
- sciences agricoles agriculture, sylviculture et pêche agriculture horticulture fruiticulture
- sciences naturelles mathématiques mathématiques pures arithmétique
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes combinatoire
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-COG - Consolidator Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2014-CoG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
37073 Gottingen
Allemagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.