Objective
The era of finding “easy oil” is coming to an end, and future supply will become more reliant on fossil fuels produced from enhanced oil recovery (EOR) process. Many EoR methods have been used, including mechanical, chemical, thermal and biological approaches, but there are still 50~70% of the original oil trapped in reservoir rocks after the primary and secondary recovery. NanoEOR, i.e injecting nanoparticles (NPs) together with flooding fluids, is an emerging field. However all proposed applications are based on pre-fabricated NPs, which encountered enormous problems in NP stabilization and transport under reservoir conditions. This project proposes a revolutionary concept, iNanoEOR: in-situ production of NPs inside the reservoir for enhanced oil recovery. Rather than pre-manufacturing, dispersing and stabilizing NPs in advance, NPs will be produced in the reservoir by controlled hydrothermal reactions, acting as sensors to improve reservoir characterisation, or as property modifiers to effectively mobilize the trapped oil. This project will validate the innovative iNanoEOR concept by answering three questions: i) how the concept works? ii) what kind of NPs should be produced that can effectively mobilize trapped oil? iii) what are desired NP properties to allow them flow through a reservoir? Three work programs are designed, and a number of breakthroughs beyond state-of-art research are expected, which include i) proof-of-concept of the innovative iNanoEOR, ii) developing a new methodology for temperature measurement inside a reservoir, iii) revelation of the influence of NPs on EOR under reservoir-like conditions, iv) understanding the controlling factors in NP transport at different scales. The project will not only contribute directly to iNanoEOR, but also transfers the PI’s expertise in nanomaterials and multiphase flow into oil and gas sector and underpin many NP-related subsurface applications, which currently is non-existing in the Europe.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences polymer sciences
- medical and health sciences medical biotechnology nanomedicine
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology nanotechnology nano-materials
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
LS2 9JT Leeds
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.