Objective
Rising atmospheric CO2 concentration, increasing temperature and altered precipitation patterns dramatically impact the terrestrial biosphere with important consequences for all biogeochemical cycles. Predictions of carbon (C) and water exchange between vegetation and the atmosphere require detailed mechanistic understanding of how plants control water loss and C gain through their stomatal pores. Currently, global circulation models incorporate formulations of stomatal conductance (gs) based on stomatal optimisation theory. However, these models ignore gs regulation: (1) during night time, despite clear evidence for significant nocturnal transpiration, (2) in non-vascular plants and (3) during leaf development and senescence. To reduce the uncertainty associated with current C and water fluxes in models, we need to incorporate robust predictions of gs in response to novel environmental conditions (higher temperature, decreased water availability and elevated CO2). To fill these gaps, USIFlux, will develop a novel tracing technique to measure gs during the dark, when fluxes are an order of magnitude smaller than during the day. To do so, we will combine measurements of COS (carbonyl sulphide) uptake with CO18O fluxes and changes in the oxygen isotope composition (δ18O) of water in leaves. We will relate the response of gs at night to changes in gs during the day and in response to drought and elevated CO2. These measurements will be coupled to an experiment to investigate stomatal regulation during leaf ontogeny and in different life forms. Here, we will challenge the stomatal optimisation theory in life forms lacking active stomatal control (mosses and brackens) and during leaf development, when leaf construction costs constrain the optimisation of C gain. Empirical formulations arising from these experiments will be incorporated into large-scale soil-vegetation-atmosphere transfer models to explore their impact at larger scales.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences educational sciences didactics
- natural sciences biological sciences ecology
- natural sciences earth and related environmental sciences atmospheric sciences meteorology biosphera
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
- natural sciences biological sciences botany
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75007 PARIS CEDEX 07
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.