Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Atomic-scale investigation of structure, diffusions, and kinetics of Al2O3/MgO reaction interfaces during spinel growth

Objective

Much of our understanding of the evolution of the earth and other planets comes from analysis of minerals and rocks. In order to read the abundant information about the formation of these planets contained within them, the structure and composition of the minerals and rocks must be determined. Furthermore, the relationship between the mineral structure and the formation conditions needs to be corroborated via laboratory experiments. A typical case of mineral formation is reaction rim growth in which a new phase forms at the interface between two types of minerals. The phase resulting from the reaction of the minerals reflects the initial formation conditions. In the proposed research, MgO (periclase) will be deposited on Al2O3 (corundum) using pulsed laser deposition (PLD), and annealed at different temperatures. With this approach, the different growth stages of MgAl2O4 (spinel) phase formed at the reaction interfaces will be assessed. A combination of electron backscatter diffraction (EBSD), focused ion beam (FIB) and low kV argon-milling will be used to prepare site- and orientation- specific specimens for examination in an electron microscope. A state-of-the-art aberration-corrected scanning transmission electron microscope (STEM) with sub-Å resolution will be employed to directly resolve the actual atomic structure of reaction interfaces for the first time. Electron energy loss spectroscopy (EELS) in the STEM will be used, also for the first time, to directly reveal the elemental distributions and bonding states across the interfaces, resolving the actual atomic scale sequence of phase changes. Furthermore, electron beam excitation allows the investigation of the dynamic processes at the reaction interface. Finally the interface structure in different growth stages will be compared, therefore the relationship between the interfacial reactions and the growth conditions will be fully understood.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

UNIVERSITAT WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 166 156,80
Address
UNIVERSITATSRING 1
1010 WIEN
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 166 156,80
My booklet 0 0