Objective
Quantum computers hold the promise to efficiently solve certain computational problems that would be intractable using conventional computers. The latter are not able to efficiently incorporate quantum phenomena arising with superposition of states or entanglement. In order to realize a large-scale quantum computer, it is imperative to have superior control over the efficiency and reliability of already available quantum operations. Trapped ions, being a scalable quantum system, envisage the experimental realization of a large-scale universal quantum computer. The proposed project will demonstrate a novel route to implement a Quantum Fourier Transform (QFT), a crucial component of many quantum algorithms, in a small-scale quantum information processor based on a string of singly charged ytterbium ions confined in a linear Paul trap. In presence of a magnetic field gradient-induced coupling, simultaneous interaction between all pairs of qubits will be exploited for efficient execution of quantum algorithms. Thus, instead of decomposing a given quantum algorithm into its smallest possible elementary constituents (1- and 2-qubit gates), multi-qubit conditional quantum dynamics will be used to implement a QFT. Experiment and theory will collaborate at all stages to streamline the project. New collaborations will be established allowing to combine the tremendous knowledge and expertise already existing in the field. The breakthroughs envisioned in the project are, to explore and implement simultaneous couplings between N ≥ 4 qubits allowing for efficient execution of quantum algorithms, and to implement a Quantum Fourier Transform with N ≥ 4 qubits pointing into the future capability of realizing a large number factorization using a quantum factoring algorithm. In addition, career development plans are proposed to assist the fellow acquire new skills enabling a high level of professional maturity and independence to lead a successful career in academia.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences quantum physics
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology microwave technology
- natural sciences computer and information sciences artificial intelligence machine learning reinforcement learning
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
57076 Siegen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.