Objective
Climate models of the sort used by the Intergovernmental Panel on Climate Change (IPCC) all predict global warming over the next century, but differ widely in their detailed predictions for any specific region of the globe. The state of the art is just to run the models separately and form a weighted average of their outputs.
A new approach put forward by the applicant is that of “supermodeling”: instead of just averaging the outputs of the models, the models are allowed to influence each other in run time. One must specify how much weight a given model gives to corresponding data in each other model. In a supermodel, the weights, or “connection coefficients” are given by a machine learning algorithm. That is one would use a collection of historical data to train the connections in the supermodel, so that the most reliable dynamical features of each model would be combined. Supermodeling is an instance of “chaos synchronization”, the phenomenon wherein chaotic systems can be made to follow corresponding trajectories by exchanging surprisingly little information.
In prior investigations with supermodels, it was determined that they are particularly useful for predicting variability, like that in the El Nino cycle in the Pacific. The proposed project would use a supermodel to predict variability in the Atlantic sector due to changes in the Atlantic Meridional Overturning Circulation (AMOC), which has a large effect on climate in the surrounding region on multi-decadal time scales. Existing climate models differ widely in their predictions for AMOC.
The proposed application will require changes in the way supermodels are formed and trained so as to focus on the positions and gross characteristics of coherent structures such as ocean currents. The models that will be used to build the supermodel will be a) a collection of European models, and b) a combination of U.S. and European models from which a supermodel is already being built.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences atmospheric sciences meteorology
- natural sciences computer and information sciences computational science
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes el niño
- natural sciences computer and information sciences artificial intelligence machine learning
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5020 Bergen
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.