Objective Climate models of the sort used by the Intergovernmental Panel on Climate Change (IPCC) all predict global warming over the next century, but differ widely in their detailed predictions for any specific region of the globe. The state of the art is just to run the models separately and form a weighted average of their outputs.A new approach put forward by the applicant is that of “supermodeling”: instead of just averaging the outputs of the models, the models are allowed to influence each other in run time. One must specify how much weight a given model gives to corresponding data in each other model. In a supermodel, the weights, or “connection coefficients” are given by a machine learning algorithm. That is one would use a collection of historical data to train the connections in the supermodel, so that the most reliable dynamical features of each model would be combined. Supermodeling is an instance of “chaos synchronization”, the phenomenon wherein chaotic systems can be made to follow corresponding trajectories by exchanging surprisingly little information. In prior investigations with supermodels, it was determined that they are particularly useful for predicting variability, like that in the El Nino cycle in the Pacific. The proposed project would use a supermodel to predict variability in the Atlantic sector due to changes in the Atlantic Meridional Overturning Circulation (AMOC), which has a large effect on climate in the surrounding region on multi-decadal time scales. Existing climate models differ widely in their predictions for AMOC.The proposed application will require changes in the way supermodels are formed and trained so as to focus on the positions and gross characteristics of coherent structures such as ocean currents. The models that will be used to build the supermodel will be a) a collection of European models, and b) a combination of U.S. and European models from which a supermodel is already being built. Fields of science natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorologynatural sciencescomputer and information sciencescomputational sciencenatural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changesel niñonatural sciencescomputer and information sciencesartificial intelligencemachine learningnatural sciencescomputer and information sciencesartificial intelligencecomputational intelligence Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2014-EF - Marie Skłodowska-Curie Individual Fellowships (IF-EF) Call for proposal H2020-MSCA-IF-2014 See other projects for this call Funding Scheme MSCA-IF-EF-ST - Standard EF Coordinator UNIVERSITETET I BERGEN Net EU contribution € 196 400,40 Address Museplassen 1 5020 Bergen Norway See on map Region Norge Vestlandet Vestland Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00