Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The development of manganese-based alkene epoxidation, cis-dihydroxylation and alkane C-H oxidation catalysts

Objective

The catalytic oxidation of alkenes to give epoxides and syn-diols, as well as the hydroxylation of C-H bonds in alkanes using environmentally benign reagents and conditions remains an area of significant challenge in contemporary synthetic chemistry and highly effective catalytic systems remains elusive. In the “MANGANOXI’ project a novel and ecologically friendly approach towards the development and application of manganese-based catalytic systems is proposed. The project first focuses on the use of a known manganese complex (MnTMTACN) together with Lewis Acids and hydrogen peroxide as a stoichiometric oxidant, generated using a co-catalyst from dioxygen, in the epoxidation of alkenes. The project will then develop analogues of other ligand systems to integrate ‘click’ generated 1,2,3-triazoles as pyridine surrogates, which should result in modular ligand systems which can be readily tuned. In addition, in order to obtain easier isolation of products and enable catalyst recycling, the most effective ligand systems will be anchored onto selected support using ‘click’ chemistry. The use of the copper-catalysed [3+2] ‘click’ Huisgen cycloaddition of an alkyne and azide is indispensable, as it facilitates both the anchoring of the ligand on the support and the incorporation of the pyridine surrogate into the ligand architecture. The catalytic oxidation reactions using the immobilized metal-ligand complex will then be conducted in a flow reactor, which will result in enormous potential of application in industry, by virtue of estimated high reproducibility and unrestrained scale-up of reactions. The “MANGANOXI’ project will not only contribute to European excellence and competiveness, but also reflects the principles of Green Chemistry and Technology for Sustainable Development.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

QUEEN MARY UNIVERSITY OF LONDON
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
327 MILE END ROAD
E1 4NS LONDON
United Kingdom

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0