Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Structural and mechanistic study of ion transport in Channelrhodopsin-2

Objective

Channelrhodopsins are type-I rhodopsin proteins found in green algae that function as sensory photoreceptors and turn into ion channels under illumination. Upon light absorbance, the retinal moiety induces a conformational change on the protein that opens a channel through which ions can pass.
Neurons expressing channelrhodopsin-2 (ChR2) can be depolarized rapidly and reversibly by illumination, hence allowing control of the activation/inactivation of neurons in specific locations of the brain. For this reason, ChR2 has been used widely in optogenetics to study neuronal circuits and disorders in the brain, and to restore light sensitivity and visual capabilities in damaged retinas. However, in contrast to closely related bacteriorhodopsins or halorhodopsins, very little is known about their structure, light cycle and mechanism of action. The current structural evidences of ChR2 is limited to 1) the 6 Å projection map obtained by cryo-electron microscopy that contains a mixture of light (open channel) and dark (closed channel) states; and 2) the 2.3 Å X-ray structure of the dark state of a ChR1/ChR2 chimera.
In the present proposal, we aim at elucidating the structure, properties and mechanism of action of the transient species of ChR2 during its photochemical cycle by means of theoretical methods and in close collaboration with the experimental biophysics groups of the host institute.
The mechanisms of ion transport and channel opening will be simulated by enhanced sampling and free energy methods. Specific quantum-mechanics/molecular-mechanics (QM/MM) force matching force field will be generated ad hoc for the retinal moiety in the ChR2 environment. The model structures generated for the closed, open, and desensitized states will be validated 1) by comparison of the QM/MM spectroscopic properties of the model with experimental observations; and 2) by comparison to electron microscopy structures using a Bayesian analysis method recently developed in the host group.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 159 460,80
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 159 460,80
My booklet 0 0