Skip to main content
European Commission logo print header

High energy lithium sulphur cells and batteries

Resultado final

Dissemination and communication plan

D10.2 Dissemination and communication plan. The deliverable is self-explanatory in its title (work within Task 10.1; Deliverable leader: TAU; Partners: NIC) [M12].

Characterisation procedures

D2.3. Characterisation procedures. This deliverable will include standardized procedures for all characterisation techniques used in the project. The most optimal procedures for electrochemical tests and ageing will be adopted and methods for abuse and safety tests will also be described (work within Tasks 2.3, 2.4, and 2.5; Deliverable leader: SAFT; Participants: IREC, NIC, CNRS-LRCS, PSA) [M6].

Databases from the modelling and engineering of the composite electrodes (1st generation)

D6.3. Databases from the modelling and engineering of the composite electrodes (1st generation). The CNRS-LRCS one-dimensional performance model results with the suggested electrode architectures (e.g. compositions, pore size distributions, optimized electrode structures…) will be collected in the format of databases files at M24 to support the fabrication (work within task 6.3; deliverable leader: CNRS-LRCS, participants: SAFT, TAU) [M24].

Databases on electrolyte modelling

D6.1. Databases on electrolyte modelling. The molecular level interactions between all electrolyte solute-solvent components will be mapped and described both qualitatively and quantitatively. The data obtained will be correlated vs. experimental data and processed in the form of database files at M24 for further usage in other Tasks within the WP6. The mathematical equations associated to the derived continuum models of the electrolyte (at bulk and inside the separator pores) transport properties will be collected in database files together with the numerical investigations of the influence of different physicochemical and structural parameters (e.g. solvent donor number, separator pore size distribution) at M24. Excel-sheet like databases with suggestions of optimized electrolyte compositions and separator meso-structure will be also provided at M24. Some of these databases will be made fully available online in the project website (work within task 6.1; deliverable leader Chalmers; participants: CNRS-LRCS) [M24].

Review of recycling processes with directions for Li-S battery recycling

D9.1. Review of recycling processes with directions for Li-S battery recycling. A general overview of recycling processes in the field of battery recycling will be used for the determination of Li-S battery recycling steps (work within Task 9.1; Deliverable leader: Accurec) [M9].

Databases on interfacial electrochemistry modelling

D6.2. Databases on interfacial electrochemistry modelling. The KMC modelling approach results (in terms of mathematical expressions, relevant reaction rates, activation energies, interfacial charge distribution, etc.) will be collected in the format of database files at M24 and M36 Some of these databases can be made fully available online through the project website (work within task 6.2; deliverable leader: CNRS-LRCS) [M24].

Modelling and design of recycling process

D9.2. Modelling and design of recycling process. The results of the comprehensive, software-based thermo-chemical modelling of the drafted process technology will be condensed and prepared for public release (work within Tasks 9.2 and 9.3; Deliverable leader: Accurec) [M15].

Definition of the starting chemical environment

D2.1. Definition of the starting chemical environment. As a starting point, the Li-S cell components (host matrix and electrolyte) developed within the EUROLIS project will be used; the optimal electrode composition, electrode thickness, and electrolyte quantity will all subsequently be defined, including their optimal testing procedures (combination of work within Tasks 2.1, 2.3, and 2.4; Deliverable leader: NIC; Participants: Chalmers, SAFT, CNRS-LRCS, MPI) [M1].

Web page

D10.1. Web page. The deliverable is self-explanatory in its title (work within Task 10.4; Deliverable leader: NIC) [M6].

Publicaciones

The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithium–sulfur batteries

Autores: Sara Drvarič Talian, Marija Bešter-Rogač, Robert Dominko
Publicado en: Electrochimica Acta, Issue 252, 2017, Page(s) 147-153, ISSN 0013-4686
Editor: Pergamon Press Ltd.
DOI: 10.1016/j.electacta.2017.08.168

Predicting the Solubility of Sulfur: A COSMO-RS-Based Approach to Investigate Electrolytes for Li-S Batteries

Autores: Steffen Jeschke, Patrik Johansson
Publicado en: Chemistry - A European Journal, Issue 23/38, 2017, Page(s) 9130-9136, ISSN 0947-6539
Editor: John Wiley & Sons Ltd.
DOI: 10.1002/chem.201701011

Lithium-Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium-Metal Batteries

Autores: Jens Becking, Albert Gröbmeyer, Martin Kolek, Uta Rodehorst, Susanne Schulze, Martin Winter, Peter Bieker, Marian Cristian Stan
Publicado en: Advanced Materials Interfaces, Issue 4/16, 2017, Page(s) 1700166, ISSN 2196-7350
Editor: John Wiley & Sons Ltd.
DOI: 10.1002/admi.201700166

Fluorinated Ether Based Electrolyte for High-Energy Lithium–Sulfur Batteries: Li + Solvation Role Behind Reduced Polysulfide Solubility

Autores: Sara Drvarič Talian, Steffen Jeschke, Alen Vizintin, Klemen Pirnat, Iztok Arčon, Giuliana Aquilanti, Patrik Johansson, Robert Dominko
Publicado en: Chemistry of Materials, Issue 29/23, 2017, Page(s) 10037-10044, ISSN 0897-4756
Editor: American Chemical Society
DOI: 10.1021/acs.chemmater.7b03654

Improving the Durability and Minimizing the Polysulfide Shuttle in the Li/S Battery

Autores: E. Peled, I. Shekhtman, T. Mukra, M. Goor, I. Belenkaya, D. Golodnitsky
Publicado en: Journal of The Electrochemical Society, Issue 165/1, 2017, Page(s) A6051-A6057, ISSN 0013-4651
Editor: Electrochemical Society, Inc.
DOI: 10.1149/2.0101801jes

The Effect of Binders on the Performance and Degradation of the Lithium/Sulfur Battery Assembled in the Discharged State

Autores: E. Peled, M. Goor, I. Schektman, T. Mukra, Y. Shoval, D. Golodnitsky
Publicado en: Journal of The Electrochemical Society, Issue 164/1, 2016, Page(s) A5001-A5007, ISSN 0013-4651
Editor: Electrochemical Society, Inc.
DOI: 10.1149/2.0161701jes

Polysulfides Formation in Different Electrolytes from the Perspective of X-ray Absorption Spectroscopy

Autores: Robert Dominko, Alen Vizintin, Guiliana Aquilanti, Lorenzo Stievano, Maria Joseph Helen, Anji Reddy Munnangi, Maximilian Fichtner, Iztok Arcon
Publicado en: Journal of The Electrochemical Society, Issue 165/1, 2017, Page(s) A5014-A5019, ISSN 0013-4651
Editor: Electrochemical Society, Inc.
DOI: 10.1149/2.0151801jes

The Role of Cellulose Based Separator in Lithium Sulfur Batteries

Autores: Nejc Pavlin, Silvo Hribernik, Gregor Kapun, Sara Drvarič Talian, Christian Njel, Rémi Dedryvère, Robert Dominko
Publicado en: Journal of The Electrochemical Society, Issue 166/3, 2018, Page(s) A5237-A5243, ISSN 0013-4651
Editor: Electrochemical Society, Inc.
DOI: 10.1149/2.0401903jes

Linear and Cross-Linked Ionic Liquid Polymers as Binders in Lithium–Sulfur Batteries

Autores: Alen Vizintin, Ryan Guterman, Johannes Schmidt, Markus Antonietti, Robert Dominko
Publicado en: Chemistry of Materials, Issue 30/15, 2018, Page(s) 5444-5450, ISSN 0897-4756
Editor: American Chemical Society
DOI: 10.1021/acs.chemmater.8b02357

Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries

Autores: Jernej Bobnar, Matic Lozinšek, Gregor Kapun, Christian Njel, Rémi Dedryvère, Boštjan Genorio, Robert Dominko
Publicado en: Scientific Reports, Issue 8/1, 2018, ISSN 2045-2322
Editor: Nature Publishing Group
DOI: 10.1038/s41598-018-23991-2

Disiloxane with nitrile end groups as Co-solvent for electrolytes in lithium sulfur batteries – A feasible approach to replace LiNO3

Autores: Tzach Mukra, Yonatan Horowitz, Inna Shekhtman, Meital Goor, Sara Drvarič Talian, Larisa Burstein, Johannes Kasnatscheew, Paul Meister, Mariano Grünebaum, Martin Winter, Hans-Dieter Wiemhöfer, Diana Golodnitsky, Emanuel Peled
Publicado en: Electrochimica Acta, 2019, ISSN 0013-4686
Editor: Pergamon Press Ltd.
DOI: 10.1016/j.electacta.2019.03.144

Lithium-Powder Based Electrodes Modified with ZnI 2 for Enhanced Electrochemical Performance of Lithium-Metal Batteries

Autores: Aleksei Kolesnikov, Dong Zhou, Martin Kolek, Juan Pablo Badillo Jimenez, Peter Bieker, Martin Winter, Marian Cristian Stan
Publicado en: Journal of The Electrochemical Society, Issue 166/8, 2019, Page(s) A1400-A1407, ISSN 0013-4651
Editor: Electrochemical Society, Inc.
DOI: 10.1149/2.0401908jes

The Effects of Lithium Sulfur Battery Ageing on Second-Life Possibilities and Environmental Life Cycle Assessment Studies

Autores: Deidre Wolff, Lluc Canals Casals, Gabriela Benveniste, Cristina Corchero, Lluís Trilla
Publicado en: Energies, Issue 12/12, 2019, Page(s) 2440, ISSN 1996-1073
Editor: Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/en12122440

A Microstructurally Resolved Model for Li-S Batteries Assessing the Impact of the Cathode Design on the Discharge Performance

Autores: Vigneshwaran Thangavel, Kan-Hao Xue, Youcef Mammeri, Matias Quiroga, Afef Mastouri, Claude Guéry, Patrik Johansson, Mathieu Morcrette, Alejandro A. Franco
Publicado en: Journal of The Electrochemical Society, Issue 163/13, 2016, Page(s) A2817-A2829, ISSN 0013-4651
Editor: Electrochemical Society, Inc.
DOI: 10.1149/2.0051614jes

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles