CORDIS - Résultats de la recherche de l’UE
CORDIS

Bioengineered autonomous cell-biomaterials devices for generating humanised micro-tissues for regenerative medicine

Description du projet

Faire progresser l’ingénierie tissulaire biomimétique

L’activation de la réparation endogène des tissus se distingue comme une stratégie intéressante pour la médecine régénérative. Des solutions avancées d’ingénierie tissulaire imitant le processus naturel de régénération et l’organisation hiérarchique des tissus natifs sont par conséquent indispensables. Financé par le Conseil européen de la recherche, le projet ATLAS entend développer des solutions tissulaires en ingénierie 3D qui intègrent des signaux physiques et biochimiques pertinents pour les niches de cellules souches, tels que la signalisation cellulaire, la structure de la matrice extracellulaire et les signaux mécaniques. Les chercheurs développeront des biomatériaux à base de macromolécules marines qui favorisent l’attachement cellulaire et la dégradation contrôlée. L’os sera le premier système modèle, les méthodologies peuvent toutefois être appliquées au développement de divers microtissus pour la modélisation des maladies et la recherche de médicaments.

Objectif

New generations of devices for tissue engineering (TE) should rationalize better the physical and biochemical cues operating in tandem during native regeneration, in particular at the scale/organizational-level of the stem cell niche. The understanding and the deconstruction of these factors (e.g. multiple cell types exchanging both paracrine and direct signals, structural and chemical arrangement of the extra-cellular matrix, mechanical signals…) should be then incorporated into the design of truly biomimetic biomaterials. ATLAS proposes rather unique toolboxes combining smart biomaterials and cells for the ground-breaking advances of engineering fully time-self-regulated complex 2D and 3D devices, able to adjust the cascade of processes leading to faster high-quality new tissue formation with minimum pre-processing of cells. Versatile biomaterials based on marine-origin macromolecules will be used, namely in the supramolecular assembly of instructive multilayers as nanostratified building-blocks for engineer such structures. The backbone of these biopolymers will be equipped with a variety of (bio)chemical elements permitting: post-processing chemistry and micro-patterning, specific/non-specific cell attachment, and cell-controlled degradation. Aiming at being applied in bone TE, ATLAS will integrate cells from different units of tissue physiology, namely bone and hematopoietic basic elements and consider the interactions between the immune and skeletal systems. These ingredients will permit to architect innovative films with high-level dialogue control with cells, but in particular sophisticated quasi-closed 3D capsules able to compartmentalise such components in a “globe-like” organization, providing local and long-range order for in vitro microtissue development and function. Such hybrid devices could be used in more generalised front-edge applications, including as disease models for drug discovery or test new therapies in vitro.

Régime de financement

ERC-ADG - Advanced Grant

Institution d’accueil

UNIVERSIDADE DE AVEIRO
Contribution nette de l'UE
€ 2 438 987,50
Adresse
CAMPUS UNIVERSITÁRIO DE SANTIAGO
3810-193 Aveiro
Portugal

Voir sur la carte

Région
Continente Centro (PT) Região de Aveiro
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 438 987,50

Bénéficiaires (2)