Objective
Brain computations rely on proper signal flow through the complex network of connected brain regions. Despite a wealth of anatomical and functional data – from microscopic to macroscopic scale – we still poorly understand the principles of how signal flow is routed through neuronal networks to generate appropriate behavior. Brain dynamics on the 'mesoscopic' scale, the intermediate level where local microcircuits communicate via axonal pathways, has remained a particular blind spot of research as it has been difficult to access under in vivo conditions. Here, I propose to tackle the mesoscopic level of brain dynamics both experimentally and theoretically, adopting a fresh perspective centered on neuronal pathway dynamics. Experimentally, we will utilize and further advance state-of-the-art genetic and optical techniques to create a toolbox for measuring and manipulating signal flow in pathway networks across a broad range of temporal scales. In particular, we will improve fiber-optic based methods for probing the activity of either individual or multiple neuronal pathways with high specificity. Using these tools we will set out to reveal mesoscopic brain dynamics across relevant cortical and subcortical regions in awake, behaving mice. Specifically, we will investigate sensorimotor learning for a reward-based texture discrimination task and rapid sensorimotor control during skilled locomotion. Moreover, by combining fiber-optic methods with two-photon microscopy and fMRI, respectively, we will start linking the meso-level to the micro- and macro-levels. Throughout the project, experiments will be complemented by computational approaches to analyse data, model pathway dynamics, and conceptualize a formal theory of mesoscopic dynamics. This project may transform the field by bridging the hierarchical brain levels and opening significant new avenues to assess physiological as well as pathological signal flow in the brain.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences optics microscopy
- social sciences sociology social issues social inequalities
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8006 Zurich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.