Objective
The exponential growth of mobile traffic, drastically increasing of network complexity, and the strong need for inter-network coordination of wireless network resources call for breakthroughs in control, coordination and flexible spectrum management in 5G heterogeneous radio access networks. The COHERENT project aims to address these problems by researching, developing and validating a novel control framework for future mobile networks. The key innovation of COHERENT is to develop a unified programmable control framework to coordinate the underlying heterogeneous mobile networks as a whole. The COHERENT control framework has two unique features to deal with the insufficiency of current control solutions for inter-network coordination. First, theories and methods to abstract the low layer network states and behaviors of different underlying mobile networks are developed, which provides a simplified but sufficient abstracted network view for network-wide control and resource coordination. Network abstraction will significantly reduce the signaling overhead, making scalable network-wide control solutions feasible, and enable more flexible spectrum management, which are key for the success of 5G networks. Second, based on the abstracted network view, common interfaces and software-development kits will be developed to enable programmability in controlling and coordinating heterogeneous mobile networks. The programmable control will provide operators a flexible and cost efficient way to implement new control functions and thus to support new services. The innovative impact of the COHERENT project is in enabling a unified control and coordination framework for heterogeneous mobile networks by combining innovative approaches on abstraction of low layers in underlying mobile networks, software defined networking, and flexible spectrum management. COHERENT will build a true proof-of-concept prototype to demonstrate the applicability and benefits of its approach.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks mobile network 5G
- natural sciences computer and information sciences software software development
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology WiFi
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.1.3. - Future Internet: Software, hardware, Infrastructures, technologies and services
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.