European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Breaking the paradigm: A new approach to understanding and controlling combustion instabilities

Descripción del proyecto

Análisis multifísico de las inestabilidades termoacústicas en cámaras de combustión anulares

Los conceptos avanzados de turbinas de gas, incluidas las cámaras de combustión anulares, son propensos a las inestabilidades termoacústicas, que pueden provocar grandes fluctuaciones de presión que afectan al rendimiento y la integridad estructural tanto de las turbinas estacionarias como de los motores de los aviones. En la mayoría de los estudios sobre estas inestabilidades se han empleado llamas axisimétricas y aisladas que captan de forma incompleta la compleja dinámica de las turbinas. El equipo del proyecto TAIAC, financiado por el Consejo Europeo de Investigación, estudiará las inestabilidades termoacústicas en cámaras anulares, incluida toda la multifísica del sistema. Para ello, el equipo creará un nuevo tipo de instalación anular con condiciones de contorno relevantes para el motor que permitan la caracterización tridimensional completa de flujos altamente asimétricos, la mejora de los modelos predictivos y el diseño inteligente.

Objetivo

It is well known that current and future low-emission combustion concepts for gas turbines are prone to thermoacoustic instabilities. These give rise to large pressure fluctuations that can drastically reduce the operable range and threaten the structural integrity of stationary gas turbines and aero engines. In the last 6 years the development of laboratory-scale annular combustors and high-performance computing based on Large Eddy Simulations (LES) have been able to reproduce thermoacoustic oscillations in annular combustion chambers, giving us unprecedented access to information about their nature.

Until now, it has been assumed that a complete understanding of thermoacoustic instabilities could be developed by studying the response of single axisymmetric flames. Consequently stability issues crop up far into engine development programmes, or in service, because we lack the knowledge to predict their occurrence at the design stage. However, the ability to experimentally study thermoacoustic instabilities in laboratory-scale annular combustors using modern experimental methods has set the stage for a breakthrough in our scientific understanding capable of yielding truly predictive tools.

This proposal aims to break the existing paradigm of studying isolated flames and provide a step change in our scientific understanding by studying thermoacoustic instabilities in annular chambers where the full multiphysics of the problem are present. The technical goals of the proposal are: to develop a novel annular facility with engine relevant boundary conditions; to use this to radically increase our understanding of the underlying physics and flame response, paving the way for the next generation of predictive methods; and to exploit this understanding to improve system stability through intelligent design. Through these goals the proposal will provide an essential bridge between academic and industrial research and strengthening European thermoacoustic expertises.

Palabras clave

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Aportación neta de la UEn
€ 1 929 103,26
Dirección
HOGSKOLERINGEN 1
7491 Trondheim
Noruega

Ver en el mapa

Región
Norge Trøndelag Trøndelag
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 929 103,26

Beneficiarios (1)