Descripción del proyecto
Análisis multifísico de las inestabilidades termoacústicas en cámaras de combustión anulares
Los conceptos avanzados de turbinas de gas, incluidas las cámaras de combustión anulares, son propensos a las inestabilidades termoacústicas, que pueden provocar grandes fluctuaciones de presión que afectan al rendimiento y la integridad estructural tanto de las turbinas estacionarias como de los motores de los aviones. En la mayoría de los estudios sobre estas inestabilidades se han empleado llamas axisimétricas y aisladas que captan de forma incompleta la compleja dinámica de las turbinas. El equipo del proyecto TAIAC, financiado por el Consejo Europeo de Investigación, estudiará las inestabilidades termoacústicas en cámaras anulares, incluida toda la multifísica del sistema. Para ello, el equipo creará un nuevo tipo de instalación anular con condiciones de contorno relevantes para el motor que permitan la caracterización tridimensional completa de flujos altamente asimétricos, la mejora de los modelos predictivos y el diseño inteligente.
Objetivo
It is well known that current and future low-emission combustion concepts for gas turbines are prone to thermoacoustic instabilities. These give rise to large pressure fluctuations that can drastically reduce the operable range and threaten the structural integrity of stationary gas turbines and aero engines. In the last 6 years the development of laboratory-scale annular combustors and high-performance computing based on Large Eddy Simulations (LES) have been able to reproduce thermoacoustic oscillations in annular combustion chambers, giving us unprecedented access to information about their nature.
Until now, it has been assumed that a complete understanding of thermoacoustic instabilities could be developed by studying the response of single axisymmetric flames. Consequently stability issues crop up far into engine development programmes, or in service, because we lack the knowledge to predict their occurrence at the design stage. However, the ability to experimentally study thermoacoustic instabilities in laboratory-scale annular combustors using modern experimental methods has set the stage for a breakthrough in our scientific understanding capable of yielding truly predictive tools.
This proposal aims to break the existing paradigm of studying isolated flames and provide a step change in our scientific understanding by studying thermoacoustic instabilities in annular chambers where the full multiphysics of the problem are present. The technical goals of the proposal are: to develop a novel annular facility with engine relevant boundary conditions; to use this to radically increase our understanding of the underlying physics and flame response, paving the way for the next generation of predictive methods; and to exploit this understanding to improve system stability through intelligent design. Through these goals the proposal will provide an essential bridge between academic and industrial research and strengthening European thermoacoustic expertises.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias físicasmecánica clásicamecánica de fluidosdinámica de fluidos
- ciencias naturalesciencias físicasacústica
- ciencias naturalesinformática y ciencias de la informaciónciencias de la computaciónmultifísica
- ciencias naturalesinformática y ciencias de la informaciónsoftwaresoftware de aplicaciónsoftware de simulación
- ingeniería y tecnologíaingeniería ambientalenergía y combustiblesconversión de la energía
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
7491 Trondheim
Noruega