European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Breaking the paradigm: A new approach to understanding and controlling combustion instabilities

Descrizione del progetto

Un’analisi multifisica delle instabilità termoacustiche in camere di combustione anulari

I concetti avanzati delle turbine a gas, compresi i combustori anulari, sono soggetti all’insorgere di instabilità termoacustiche, che possono portare a intense fluttuazioni di pressione ripercuotendosi a loro volta sulle prestazioni e sull’integrità strutturale delle turbine stazionarie e dei motori dei velivoli. La maggior parte degli studi su queste instabilità si è affidata all’impiego di fiamme singole, isolate e assialsimmetriche, non in grado di acquisire in modo completo le complesse dinamiche delle turbine. Il progetto TAIAC, finanziato dal CER, studierà le instabilità termoacustiche nelle camere anulari, includendo l’intera multifisica relativa al sistema. A tal fine, il team svilupperà un nuovo tipo di struttura anulare caratterizzata da condizioni limite rilevanti per il motore, che consentirà la caratterizzazione completa in 3D di flussi altamente asimmetrici, modelli predittivi migliorati e una progettazione intelligente.

Obiettivo

It is well known that current and future low-emission combustion concepts for gas turbines are prone to thermoacoustic instabilities. These give rise to large pressure fluctuations that can drastically reduce the operable range and threaten the structural integrity of stationary gas turbines and aero engines. In the last 6 years the development of laboratory-scale annular combustors and high-performance computing based on Large Eddy Simulations (LES) have been able to reproduce thermoacoustic oscillations in annular combustion chambers, giving us unprecedented access to information about their nature.

Until now, it has been assumed that a complete understanding of thermoacoustic instabilities could be developed by studying the response of single axisymmetric flames. Consequently stability issues crop up far into engine development programmes, or in service, because we lack the knowledge to predict their occurrence at the design stage. However, the ability to experimentally study thermoacoustic instabilities in laboratory-scale annular combustors using modern experimental methods has set the stage for a breakthrough in our scientific understanding capable of yielding truly predictive tools.

This proposal aims to break the existing paradigm of studying isolated flames and provide a step change in our scientific understanding by studying thermoacoustic instabilities in annular chambers where the full multiphysics of the problem are present. The technical goals of the proposal are: to develop a novel annular facility with engine relevant boundary conditions; to use this to radically increase our understanding of the underlying physics and flame response, paving the way for the next generation of predictive methods; and to exploit this understanding to improve system stability through intelligent design. Through these goals the proposal will provide an essential bridge between academic and industrial research and strengthening European thermoacoustic expertises.

Parole chiave

Meccanismo di finanziamento

ERC-STG - Starting Grant

Istituzione ospitante

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Contribution nette de l'UE
€ 1 929 103,26
Indirizzo
HOGSKOLERINGEN 1
7491 Trondheim
Norvegia

Mostra sulla mappa

Regione
Norge Trøndelag Trøndelag
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 929 103,26

Beneficiari (1)