Descripción del proyecto
Un innovador marco de representación no lineal de señales podría mejorar la exploración espacial
La astrofísica ha alcanzado un punto de inflexión y se enfrenta a complejos retos de análisis de datos que requieren el desarrollo de métodos avanzados de procesamiento de señales. Las representaciones de señales dispersas han sido fundamentales para crear un mapa completo de la radiación de fondo de microondas a partir de los datos de Planck. Sin embargo, los enfoques lineales estándar de procesamiento de señales poseen una capacidad limitada para captar las propiedades inherentemente no lineales de los datos físicos. El equipo del proyecto LENA, financiado con fondos del Consejo Europeo de Investigación (ERC, por sus siglas en inglés), pretende abordar estas limitaciones al estudiar un nuevo marco de representación de señales no lineales y desarrollando métodos numéricos para explotar modelos no lineales. Los resultados del proyecto tendrán importantes repercusiones para el análisis de datos astrofísicos, concretamente dentro de la misión Planck y el radiointerferómetro europeo LOFAR (Low Frequency ARray). Se espera que su impacto sea similar al conseguido con la dispersión sobre el terreno.
Objetivo
Astrophysics has arrived to a turning point where the scientific exploitation of data requires overcoming challenging analysis issues, which mandates the development of advanced signal processing methods. In this context, sparsity and sparse signal representations have played a prominent role in astrophysics. Indeed, thanks to sparsity, an extremely clean full-sky map of the Cosmic Microwave Background (CMB) has been derived from the Planck data [Bobin14], a European space mission that observes the sky in the microwave wavelengths. This led to a noticeable breakthrough: we showed that the large-scale statistical studies of the CMB can be performed without having to mask the galactic centre anymore thanks to the achieved high quality component separation [Rassat14].
Despite the undeniable success of sparsity, standard linear signal processing approaches are too simplistic to capture the intrinsically non-linear properties of physical data. For instance, the analysis of the Planck data in polarization requires new sparse representations to finely capture the properties of polarization vector fields (e.g. rotation invariance), which cannot be tackled by linear approaches. Shifting from the linear to the non-linear signal representation paradigm is an emerging area in signal processing, which builds upon new connections with fields such as deep learning [Mallat13].
Inspired by these active and fertile connections, the LENA project will: i) study a new non-linear signal representation framework to design non-linear models that can account for the underlying physics, and ii) develop new numerical methods that can exploit these models. We will further demonstrate the impact of the developed models and algorithms to tackle data analysis challenges in the scope of the Planck mission and the European radio-interferometer LOFAR. We expect the results of the LENA project to impact astrophysical data analysis as significantly as deploying sparsity to the field has achieved.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales informática y ciencias de la información ciencia de datos
- ingeniería y tecnología ingeniería eléctrica, ingeniería electrónica, ingeniería de la información ingeniería electrónica procesamiento de señales
- ciencias naturales ciencias físicas astronomía astrofísica materia oscura
- ciencias naturales informática y ciencias de la información inteligencia artificial aprendizaje automático aprendizaje profundo
- ciencias naturales matemáticas matemáticas aplicadas análisis numérico
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2015-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
75015 PARIS 15
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.