Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

VISUALIZATION OF TOPOLGICAL STATES IN PRISTINE NANOWIRES

Descripción del proyecto

Caracterización y aprovechamiento de estados topológicos en nanocables

Los estados topológicos de la materia se descubrieron hace unos quince años. Hace poco, se ha averiguado que los estados electrónicos topológicos están presentes en casi todos los materiales conocidos para cada electrón de la configuración cristalina. Aunque ya se han identificado muchos materiales topológicos tridimensionales, solo existen unos pocos materiales topológicos bidimensionales demostrados experimentalmente. En el proyecto TOPO-NW, financiado por el Consejo Europeo de Investigación, se estudiarán los estados topológicos en nanocables epitaxiales unidimensionales, una configuración que permite novedosos sistemas topológicos de alta sintonizabilidad. Sus investigadores ajustarán selectivamente la estructura de bandas de los estados superficiales, estudiarán la respuesta local de los electrones de Dirac superficiales y utilizarán los conocimientos adquiridos para crear dispositivos electrónicos y espintrónicos topológicos basados en nanocables.

Objetivo

Topological phases of matter have been at the center of intense scientific research. Over the past decade this has led to the discovery of dozens of topological materials with exotic boundary states. In three dimensional topological phases, scanning tunneling microscopy (STM) has been instrumental in unveiling the unusual properties of these surface states. This success, however, did not encompass lower dimensional topological systems. The main reason is surface contamination which is disruptive both for STM and for the fragile electronic states. We propose to study topological states of matter in pristine epitaxial nanowires by combining growth, fabrication and STM, all in a single modular ultra-high vacuum space. This platform will uniquely allow us to observe well anticipated topological phenomena in one dimension such as the Majorana end-modes in semiconducting nanowires. On a broader view, the nanowire configuration intertwines dimensionality and geometry with topology giving rise to novel topological systems with high tunability. A vivid instance is given by topological crystalline insulator nanowires in which the topological symmetry protection can be broken by a variety of perturbations. We will selectively tune the surface states band structure and study the local response of massless and massive surface Dirac electrons. Tunability provides a higher degree of control. We will utilize this to realize topological nanowire-based electronic and spintronic devices such as a Z2 pump and spin-based Mach-Zehnder interferometer for Dirac electrons. The low dimensionality of the nanowire alongside various singularities in the electronic spectra of different topological phases enhance interaction effects, serving as a cradle for novel correlated topological states. This new paradigm of topological nanowires will allow us to elucidate deep notions in topological matter as well as to explore new concepts and novel states, thus providing ample experimental prospects.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

WEIZMANN INSTITUTE OF SCIENCE
Aportación neta de la UEn
€ 1 750 000,00
Dirección
HERZL STREET 234
7610001 Rehovot
Israel

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 750 000,00

Beneficiarios (1)