Project description
Cracking the evolutionary code of meiotic stability
Organisms rely on conserved cellular processes vital for survival and reproduction, but environmental and cellular stresses can disrupt these functions. The ERC-funded EVO-MEIO project will delve into the evolution of meiotic stability, which is a critical process for fertility in sexual eukaryotes. Meiosis serves as a model to understand the evolution of complex multiprotein processes. While the core structures and functions of meiosis are conserved, the proteins involved often exhibit sequence divergence and selective sweeps. The project will focus on autopolyploid Arabidopsis arenosa to investigate how selection has acted on eight structural meiosis proteins. These proteins are believed to have co-evolved as an ‘adaptive module’, reducing multivalent formation and genome-wide crossover rates. By deciphering the evolution of meiotic stability, the study will offer insights for crop improvement and shed light on the adaptability of intricate cellular processes in the face of challenges.
Objective
Organisms rely on conserved cellular “house-keeping” processes for survival and fertility, but many of these can be upset by common environmental or cellular stresses. What happens if such a challenge becomes more than transient? Meiosis is a well-suited model for understanding how a constrained multiprotein process can evolve; it is biochemically well characterized, critical for fertility in sexual eukaryotes, and its core structures and functions are conserved across kingdoms. Yet proteins that orchestrate meiosis often have high primary sequence divergence among taxa and in some cases have undergone selective sweeps. We hypothesize this pattern reflects a need to repeatedly retune meiotic structures to new conditions over evolutionary time. Environment and genome architecture can both affect meiosis, but a common and particularly potent challenge is whole genome duplication (WGD), which has occurred in most major eukaryotic lineages. But WGD doubles the number of copies of each homolog present, and this can lead to formation of multivalent chromosome associations in meiosis, which can cause meiotic instability and low fertility. Nevertheless, many fertile and meiotically stable polyploids exist, showing that evolution can overcome this challenge. Here we will study how meiotic stability evolved in autopolyploid Arabidopsis arenosa. We previously showed selection acted on eight structural meiosis proteins and hypothesize these co-evolved as an “adaptive module” to prevent multivalent formation by reducing genome-wide crossover rates. This multidisciplinary research programme melds cytological, molecular, genetic, and genomic approaches to discover how meiosis functionally evolved before and after WGD. This work will provide novel insights into how a functionally constrained multiprotein process can evolve in response to challenges, and by providing understanding of crossover rate evolution and polyploid stabilization, is also relevant to rational crop improvement.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences genetics heredity
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
- natural sciences biological sciences genetics chromosomes
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8092 Zuerich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.