Objective
The aim of STREAMS is to bring Europe into the new leading thermal management paradigm and maintain EU position at the forefront of ICT development. With a focused consortium gathering complementary experts, STREAMS will develop a generic active cooling thermal management solution (reaching TRL4), to keep nanoelectronic devices and systems performances at their best, while meeting IC future challenges.
To successfully integrate Versatile microfluidic actuation, Anticipating thermal map and Thermal energy harvesting in a Si-based interposer, STREAMS will:
- Lay-out advanced functionalities for the power efficient cooling control of application use-cases with critical heat load spatial distributions including hotspot areas (150 to 300 W/cm2) and background areas (20W/cm2) and temporal heat load variation in typical sub-second time scale
- Develop self-adaptive and controlled micro-fluidic actuators to decrease by 25% both the pressure loss and the fluid flow rate, while controlling the temperature distribution within 15% below the acceptable limits of each component for spatial and temporal heat flux variation scenarios
- Integrate IC compatible passive heat flux sensors (sensitivity up to S=100mV/K) at the interposer level to anticipate thermal map variation (time response~200ms, lateral spatial resolution=500µm)
- Take advantage of existing thermal gradients to embed high performance nanostructured thermoelectric generator (harvested power up to 10mW) to power local functionalities (microfluidic valves, power management and read-out circuits, control ASIC)
- Integrate the developed functionalities into a Si based interposer to demonstrate a smart, adaptable and embedded active cooling thermal management solution with reduced footprint (70% thickness reduction) and reduced consumption (-50%)
- Assess reliability and performances of STREAMS thermal management solution in real future high performance applications in micro-servers (P=50W) and network use cases (P=200W)
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering thermodynamic engineering heat engineering
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radar
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.