Skip to main content

Photonics of Spin–Orbit Optical Phenomena

Objective

Spin-orbit optical phenomena can be broadly defined as those phenomena in which the polarization (“spin”) and the spatial structure (“orbit”) of an optical wave interact with each other and become spatially and/or temporally correlated, leading to novel effects or photonic applications.
The project vision is a full-fledged spin-orbit photonic science and technology, and its achievement will be pursued by moving in three main directions:
1) We will develop innovative systems based on spin-orbit optical media for generating light fields exhibiting a complex spatial vector structure, both in two dimensions (transverse plane and transverse fields) and in three (i.e. involving time- and space-dependent polarization fields and longitudinal field components). We will extend these ideas to other spectral domains (terahertz waves) and explore the possible applications of these fields in areas such as optical manipulation, plasmonics, space-division multiplexing in optical fibers, time-domain terahertz spectroscopy, ultrafast optics.
2) We will exploit spin-orbit quantum correlations generated within single photons and/or among few correlated photons to demonstrate novel quantum-information protocols using both the polarization and the transverse modes to encode and manipulate multiple qubits in each photon and for the implementation of quantum simulations of material systems based on photonic quantum walks in the Hilbert space of the light transverse modes.
3) We will investigate novel or unexplained physical processes occurring in structured optical media and light-sensitive material systems which respond both to the optical polarization and to its spatial inhomogeneity. Such materials will then be used to manipulate and characterize spin-orbit vector states of light.

Field of science

  • /natural sciences/physical sciences/optics/fibre optics
  • /natural sciences/physical sciences/theoretical physics/particles/photons

Call for proposal

ERC-2015-AdG
See other projects for this call

Funding Scheme

ERC-ADG - Advanced Grant

Host institution

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Address
Corso Umberto I, 40
80138 Napoli
Italy
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 1 490 833

Beneficiaries (2)

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Italy
EU contribution
€ 1 490 833
Address
Corso Umberto I, 40
80138 Napoli
Activity type
Higher or Secondary Education Establishments
UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Italy
EU contribution
€ 190 000
Address
Piazzale Aldo Moro 5
00185 Roma
Activity type
Higher or Secondary Education Establishments