Objective
Mosquito-borne diseases present one of the greatest threats to human health. Mosquitoes find humans by detecting human body odour and CO2 with their olfactory system. This project addresses the fundamental and still unresolved question of how odorant valence is coded in the brain and why odorants that are attractive (positive valence) at low concentrations, switch to being repulsive (negative valence) at high concentrations. This phenomenon of valence switch is well conserved throughout the animal kingdom and represents an ideal paradigm to address a key question in the neurosciences, i.e. how information processing in neuronal networks leads to behavioural responses. To advance the understanding of valence coding and olfactory processing, the Experienced Researcher (ER) will capitalise on her detailed knowledge of the evolutionary well conserved olfactory system of the fruitfly Drosophila melanogaster, using its powerful genetic and experimental approaches (e.g. Riabinina et al, 2015, Nature Methods; Gao et al, 2015, Nature Neuroscience). The key goal of the project is to identify patterns of neuronal activity that code for odorant valence. To achieve this goal, we will record responses of small subsets of genetically labelled second-order olfactory neurons by patch-clamp while activating olfactory receptor neurons optogenetically or by odorants of known behavioural valence. We will apply statistical and machine learning techniques to detect parameters of neuronal activity, indicative of odorant valence.
This project is significant for three reasons. First, it will dramatically improve our understanding of the mechanisms of olfactory processing likely applicable across species. Second, it will create new genetic reagents and experimental solutions, widely applicable across research areas and model organisms. Third, it will create a solid foundation for future development of powerful olfactory control strategies of insect disease vectors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- natural sciences biological sciences zoology entomology
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
- natural sciences computer and information sciences data science data processing
- natural sciences biological sciences zoology invertebrate zoology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-RI - RI – Reintegration panel
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
M13 9PL Manchester
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.