Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multi-resolution Fracture Models for High-strength Steels: Fully Ductile Fracture to Quasi-cleavage Failure in Hydrogen Environment

Objective

Recent advances in Computational Mechanics are towards the development of predictive tools that can accelerate the 'Materials Development Cycle' by unraveling the linkage between macroscopic properties and microstructure. The availability of 3D tomographic tools and the era of Exascale computing have initiated the quest to develop stronger, tougher and more durable alloys by employing 'virtual predictions' in lieu of expensive destructive testing. However, our lack of understanding of the 'structure-toughness’ relations is one of the main bottlenecks in this pursuit. Moreover, the uptake of some of these new alloys (TRIP, TWIP etc) is hampered by the concerns of hydrogen (H) induced cracking.
Existing models have limitations in describing the role of microstructural heterogeneities on mechanisms of fracture in HSS. The proposed research will develop high fidelity continuum models to cover the entire spectrum of mechanisms from fully ductile fracture to quasi-cleavage failure of HSS in H-environment. Among the various mechanisms of H-assisted cracking, hydrogen embrittlement (HE) is one of the most devastating, yet least understood, mechanism of failure in HSS.
In this work, realistic models of void nucleation accounting for the dislocations interactions with the second phase particles will be developed. The proposed models of void growth and coalescence will incorporate the microstructural length scales, thus, eliminating the deficiencies of the existing 'damage models'. The micromechanical models of HE developed in this work will incorporate the influence of hydrogen on the initiation and propagation of microcracks leading to complete failure. These models will be integrated with the most advanced models of H-diffusion and trapping (being developed at Oxford) to describe the detailed mechanism of fracture at crack tip in HSS. It is expected that this work will bring, in due course, significant international recognition for its fundamental and applied contribution

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0