Objective
"Over the last decades, the amount of data has increased in an unprecedented rate, leading to a new terminology: ""Big Data"". Big data are specified by their Volume, Variety, Velocity and by their Veracity/Imprecision. Based on these 4V specificities, it has become difficult to quickly acquire the most useful information from the huge amount of data at hand. Thus, it is necessary to perform data (pre-)processing as a first step. In spite of the existence of many techniques for this task, most of the state-of-the-art methods require additional information for thresholding and are neither able to deal with the big data veracity aspect nor with their computational requirements. This project's overarching aim is to fill these major research gaps with an optimised framework for big data pre-processing in certain and imprecise contexts. Our approach is based on Rough Set Theory (RST) for data pre-processing and Randomised Search Heuristics for optimisation and will be implemented under the Spark MapReduce model.
The project combines the expertise of the experienced researcher Dr Zaineb Chelly Dagdia in machine learning, rough set theory and information extraction with the knowledge in optimisation and randomised search heuristics of the supervisor Dr Christine Zarges at the University of Birmingham (UoB). Further expertise is provided by internal and external collaborators from academic and non-academic institutions, namely Prof Tino (UoB), Prof Merelo (University of Granada), Prof Lebbah (University of Paris 13) and Philippe Barra (Arrow Group). The involvement of Arrow Group, an SME based in France specialised in Big data, Banking, Finance & Insurance is of particular importance to ensure that real-world requirements are met throughout the development of the framework.
"
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics discrete mathematics mathematical logic
- natural sciences computer and information sciences data science big data
- natural sciences computer and information sciences data science data mining
- natural sciences computer and information sciences artificial intelligence heuristic programming
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SY23 3BF Aberystwyth
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.