Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Deep learning and Bayesian inference for medical imaging

Objective

Diseases characteristic for modern western civilization, such as cancer, diabetes or cardiovascular disorders, lead to millions of deaths per year in the European Union. In order to decrease this enormous quantity, medical imaging should be widely available at early diagnostics and every stage of a therapy. Nowadays, there are various diagnostics techniques including CT, PET, MRI, however, analysis of a medical image is time-consuming and expensive. Development of new effective automatic tool for medical imaging will appear a new strategy in highly specific control of incidences and disease progression. The aim of the DeeBMED project is to develop powerful automatic medical imaging tool that can cope with main problems associated with complex images like medical scans: multimodality of data distribution, large number of dimension and small number of examples, small amount of labeled data, multi-source learning, and robustness to transformations. In this project I will propose a probabilistic framework that combines different deep neural networks (DNN), such as feedforward nets, convolutional nets, Gaussian processes. I will apply DNN to model probabilistic relationships among a medical scan, a disease label, and hidden variables representing latent factors in data. In the case of a small sample size DNN are prone to overfitting. A possible remedy for that is Bayesian learning, however, it is still challenging how to apply it to DNN. In this project I will use various approaches: modelling weights uncertainty, Dropout, Bayesian Distillation. As the result I predict identification of the first highly effective medical imaging analysis tool that in the future will be widely used by radiologists in medical institutes in the whole EU. Novel automation will drastically reduce time and costs of analysis and provide more accessible diagnostics. The project will be carried out at the University of Amsterdam, under the supervision of Prof. Max Welling.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

UNIVERSITEIT VAN AMSTERDAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 177 598,80
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 177 598,80
My booklet 0 0