Objective
Arctic landmasses and lakes release significant amounts of methane (CH4), a potent greenhouse gas that contributes to global climate change. Yet, the effect of rapid warming in the Arctic on the fate of CH4 emissions is poorly understood, particularly over decadal to millennial timescales. The recent advance of high-throughput sequencing and metabarcoding techniques to analyse ancient environmental DNA, or paleogenomics, from Arctic lake sediment has tremendously heightened analytical sensitivity and thus unlocked a wealth of new information on past ecosystems and their processes. I will combine this innovative approach to a robust paleoecological framework and multivariate analyses to study the drivers underpinning microbial assemblages involved in the cycling of CH4 during major periods of climate variability in Greenland since deglaciation. By using an important multi-site set of lake sediment cores spreading along major environmental gradients and collected by the Anthropocene-Quaternary Research Group, I will upscale the study from catchment to region and from the present Anthropocene (~last 150 years) to the early deglaciation of the Holocene (~11,700 years ago). This dataset will also enable me to control for the different catchment-specific processes that may have influenced microbial abundance, diversity and function in the past, and isolate the influence of climate on their ecology. This interdisciplinary approach will be supported by the analysis of additional paleoecological proxies for other important components of the carbon cycle in Arctic watersheds via collaborations with Canadian and Australian laboratories. While acquiring new expertise in cutting-edge paleogenomics and microbial ecology in world-leading research facilities at the Centre for GeoGenetics, I will advance paleoecology, gain significant new insights into the global carbon cycle and improve our understanding of the sensitivity of polar ecosystems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences palaeontology paleoecology
- natural sciences earth and related environmental sciences hydrology drainage basins
- natural sciences biological sciences ecology ecosystems
- natural sciences chemical sciences organic chemistry aliphatic compounds
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.