Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Torsion units of integral group rings

Objectif

Group rings form one of the most significant classes of rings. They encode group and ring theoretical information. The study of the group of units of integral group rings was initiated in the 1940's by Higman in connection with the Isomorphism Problem. One of the main problems still unsolved is the description of its torsion units of the the torsion elements of the group V(ZG) formed by the units of augmentation 1. The Zassenhaus Conjecture, possed in the 1960's by Hans Zassenhaus, predicts that all the torsion units of V(ZG) are conjugate in the rational group algebra of the elements of G. This has been proved for some classes of groups, as for example, nilpotent or cyclic-by-abelian groups and for some special groups. A weaker conjecture stablishes that the orders of the torsion units of V(ZG) and G are the same, or the even weaker Prime Conjecture which states that V(ZG) and G have the same prime graph. The aim of this proposal is to make significant contributions on this questions. More precisely, we will concentrate in studying the above questions for G metabelian and for some series of simple groups as, for example, the projective linear groups. We intent to develope new techniques which surpasses some of the obstacles founded using the existing methods as for example the HeLP Method. Some recent progress obtained recently by the applying researcher, as the Lattice Method introduced in his Ph.D. Thesis and a software developed in cooperation with A. Bächle implementing the HeLP Method, would be very useful to obtain the goals of the project.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF-EF-ST - Standard EF

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2015

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSIDAD DE MURCIA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 118 591,20
Adresse
AVENIDA TENIENTE FLOMESTA S/N - EDIFICIO CONVALECENCIA
30003 Murcia
Espagne

Voir sur la carte

Région
Sur Región de Murcia Murcia
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 118 591,20
Mon livret 0 0