Objective
In native tissues, the extracellular matrix (ECM) provides not only physical scaffolding to cells, but also biochemical and biomechanical cues affecting cell behaviour. ECM mechanical properties are critical in the regulation of cell behaviour during tissue development, homeostasis and disease via mechano-transduction. Albeit biological tissues generally exhibit a time variant (i.e. dynamic) viscoelastic behaviour that changes during development, ageing and disease, to date most of mechano-transduction studies have focused on static elastic properties only. The ENDYVE project aims at engineering tissue dynamic viscoelasticity typical of pathophysiological processes in-vivo to investigate its role on cell behaviour. Focusing on cardiomyocyte maturation, the viscoelastic properties of foetal, neonatal, aged and infarcted cardiac tissue will
be characterised and used to design cell culture substrates with temporally tuneable mechanical properties that initially mimic foetal viscoelasticity and then can be made more stiff and less viscoelastic during cell culture via a second-step biocompatible enzymatic crosslinking to recapitulate dynamic changes of cardiac viscoelasticity in-vitro. First, stem cell cardiomyocyte behaviour will be investigated at discrete levels of constant viscoelasticity by seeding human induced pluripotent stem cells on substrates prior to and after enzyme-mediated crosslinking. Then the effect of dynamic changes in
substrate viscoelasticity will be characterised during culture. Engineering dynamic viscoelasticity is a critical step towards a better understating of cell-ECM interactions and mechano-transduction, and could lead to the development of new strategies to finely control cell behaviour, with numerous potential societal and clinical implication, such as obtaining mature differentiated cells from stem cells for drug screening in vitro, or limiting, if not preventing, fibrosis and tumour progression.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences medical biotechnology cells technologies stem cells
- medical and health sciences basic medicine physiology homeostasis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1101 BM Amsterdam
Netherlands
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.