Objective
Aquatic ecosystems are threatened by multiple environmental stressors including pollutants and climate change. Considerable progress has been made in understanding the environmental impact of many stressors in recent years, yet new, potentially powerful, toxicants such as engineered nanoparticles (ENPs) continue to emerge in aquatic systems and their effects on these ecosystems remain poorly understood. The release of ENPs into the environment is accelerating , and as the global climate warms, the combined effects of both stressors (ENP + temperature increase) could have significant consequences for aquatic life. As a major step into understanding the climate change-enhanced environmental impacts of ENPs in aquatic ecosystems, we focus on the responses of fluvial biofilms -microbial consortia that drive aquatic primary production and respiration and thus, control nutrient conditions - as key points of ENP entry in to aquatic food webs.
The central goal of NanoTOX is to elucidate how much river warming will affect fluvial biofilms at genetic, metabolic/functional and structural levels, and how the presence of environmental concentrations of ENPs may further stress the communities. The combination of multiple stressors (increased temperature and ENP) is expected to have a profound influence on the fluvial biofilms performance. This objective will be achieved through an innovative, interdisciplinary approach using an array of methods from the fields of ecotoxicology (ecology and toxics), molecular, functional ecology and nanotechnology will be applied.
The proposed interdisciplinary study is a major first step in opening a new research field focussing specifically on biofilms as entry points to the food web and assessing ENP impacts under future climate scenarios. NanoTOX project results therefore will provide valuable information to underpin current updates to European legislation, ENP industry and will address social challenges.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences biological sciences ecology ecosystems
- natural sciences earth and related environmental sciences hydrology limnology
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
B15 2TT Birmingham
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.