Objectif
Understanding quantum gravity requires us to bridge a large gap of scales. The fundamental theory we are searching for is a theory of spacetime at the shortest distances and highest energies. There are many competing proposals for what type of structure best describes this regime. We can not currently generate these high energies in the lab, and hence the most likely method of observing quantum gravity effects are large scale, i.e. astronomical and cosmological observations. To make phenomenological predictions for these large structures, from short scale quantum gravity models, we need to use a renormalisation procedure.
In solid state physics, it is common to use real space renormalisation, in which systems at different sizes are directly related. An example of this is block spin renormalisation of the Ising model, by summarising several spins into one block the system is rescaled, leading to an effective description at larger scales. Applying a similar blocking renormalisation to discrete theories of quantum gravity can help us understand their scaling behaviour. This scaling behaviour can then be used to generalise from small scale simulations to larger scale structures, and to identify universal characteristics arising in these models.
I have much experience in working with discrete gravity systems, using both analytic and computational methods, which the research and training covered in this proposal will allow me to extend.
The host institution, Radboud University in Nijmegen, was chosen for the excellent quality of research. The quantum gravity group led by Professor Loll will provide expert advice, and the strong program of visitors will further enrich the project. The mathematical physics group is comprised of experts in the field of non-commutative geometry, and the proposed research will strengthen the interdisciplinary ties between these groups.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques appliquées physique mathématique
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes logique mathématique
- sciences naturelles sciences physiques astronomie astrophysique matière noire
- sciences naturelles sciences physiques physique de la matière condensée physique des solides
- sciences naturelles sciences physiques physique théorique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF-EF-ST - Standard EF
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2015
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
6525 XZ Nijmegen
Pays-Bas
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.