Objective
The technological importance of cellulose, the most abundant and most widely used organic material on Earth is paramount with a very versatile range of applications. It constitutes the basis, among others, for paper and textile industries. Two emerging applications have been gaining importance and substantial attention: one is developing new fiber reinforced nanocomposites. The other novel application is as a carbon-neutral and renewable source for the production of biofuels. Due to its recalcitrance, cellulose fibers always need pre-treatment before actual applications. Traditional techniques work with harmful compounds constituting great environmental risk. In line with the Europe 2020 strategy, cheap and environmentally friendly technologies need to be promoted to achieve a more sustainable and resource efficient economy. Ionic liquids, a novel class of complex solvents with unique properties and a great potential to revolutionize chemical technologies, have been applied as dissolution media for processing cellulose, which has already led to cheaper and “greener” methods. To further develop these technologies, a thorough understanding of the molecular details of the dissolution and recrystallization processes is needed. Although considerable efforts have been dedicated to it, this has not yet been achieved. In this project we propose a new molecular simulation based approach by using enhanced sampling techniques to elucidate the molecular details of the slow and intricate dissolution and recrystallization processes. Unlike previous studies, we will start by investigating glucose and then increase the complexity of the system through larger oligomers enabling us to extrapolate our results eventually to cellulose fibers. This new systematic bottom-up approach will decrease the arbitrariness which previous studies suffered from. We expect the long-term impact of this project immense leading to new innovations and more efficient green technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- engineering and technology materials engineering textiles
- natural sciences physical sciences classical mechanics statistical mechanics
- engineering and technology industrial biotechnology biomaterials biofuels
- engineering and technology materials engineering nanocomposites
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1010 WIEN
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.