Objective
The packaging of genetic information into chromatin regulates a wide range of vital processes that depend on direct access to the DNA template. Many chromatin-interacting complexes impact chromatin structure and their aberrant regulation or dysfunction has been implicated in various cancers and severe developmental disorders. A better understanding of the roles of chromatin-interacting complexes in such disease states requires a detailed mechanistic study. Many chromatin-interacting complexes modify chromatin structure, yet understanding the underlying mechanisms remains a major challenge in the field. Furthermore, how chromatin-interacting complexes are regulated to enable their various functions is incompletely understood. We will address these longstanding questions in two specific aims. Aim I: Building on our expertise in single-molecule biology, we will develop powerful single-molecule imaging approaches to monitor the action of chromatin-interacting complexes in real time. We will further probe how the diverse activities of the chromatin-associated complexes are coordinated and coupled to conformational transitions. Aim II: Drawing on our expertise in structural biology, we will use a range of structural techniques in combination with biochemical approaches to study the vital regulation of chromatin-interacting complexes by their regulatory subunits as well as by chromatin features. We expect to obtain ground-breaking insights into the mechanisms and regulation of disease-related chromatin-associated complexes, which may open up new horizons for developing therapeutic intervention strategies. Furthermore, the approaches developed here will enable the investigation of a large number of chromatin-related processes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesgeneticsDNA
- natural sciencesearth and related environmental sciencesgeologymineralogycrystallography
- natural sciencesbiological sciencesgeneticsgenomes
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsenzymes
- natural sciencesbiological sciencesmolecular biologystructural biology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Topic(s)
Funding Scheme
ERC-STG - Starting GrantHost institution
751 05 Uppsala
Sweden