Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Structure-performance relationships in porous carbons for energy storage

Objective

Supercapacitors are of great interest as energy storage systems because they exhibit very high rates of charge/discharge, long cycle lifes, and they are made of cheap and light materials. These attractive properties arise from the electrostatic nature of the charge storage which results from ion adsorption in the electrode pores. Recently, it was demonstrated that ions can enter pores of sub-nanometer sizes leading to a huge increase of capacitance. This was an important breakthrough as the energy density of supercapacitors, relatively low compared to batteries, is what currently limits their application.
The progress towards more powerful supercapacitors is limited by our incomplete understanding of the relation between their performance, in particular their capacitance and charging rate, and the complex structure of the porous carbon electrodes. To make progress we need a better fundamental understanding of the ion transport and electrolyte structure in the pores but we are lacking the experimental and theoretical methods to do so.
The aim of SuPERPORES is to carry out a systematic multi-scale simulation study of supercapacitors. The use of combined molecular and mesoscopic simulations will allow us to calculate the capacitive and transport properties of a wide range of systems. Molecular simulations will be used to model ordered three-dimensional porous carbons. This will allow us to vary geometric descriptors, e.g. pore size and ion size, in a systematic way and obtain relevant microscopic information for the subsequent computational screening of porous carbons, achieved through very efficient lattice simulations. We will then be able to formulate design principles for a new, and much improved, generation of supercapacitors. The simulations will also provide other macroscopic properties, e.g. adsorption isotherms and pair distribution functions, which will be used to propose a new method to determine accurately the structure of disordered porous carbons.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-STG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 240 318,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 240 318,00

Beneficiaries (1)

My booklet 0 0