Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Second-Order Nano-Oxides for Enhanced Nonlinear Photonics

Objective

Nonlinear optics is present in our daily life with applications, e.g. light sources for microsurgery or green laser pointer. All of them use bulk materials such as glass fibers or crystals. Generating nonlinear effects from materials at the nanoscale would expand the applications to biology as imaging markers or optoelectronic integrated devices. However, nonlinear signals scale with the volume of a material. Therefore finding materials with high nonlinearities to avoid using high power and large interaction length is challenging. Many studies focus on third order nonlinearities (described by a χ(3) tensor) present in every material (silicon, graphene…) or on metals for enhancing nonlinearities with plasmonics. My approach is to explore second-order χ(2) nanomaterials, since they show higher nonlinearities than χ(3) ones, additional properties such as birefringence, wide band gap for transparency, high refractive index (n>2), and no ohmic losses. Typical χ(2) materials are oxides (BaTiO3, LiNbO3…) with a non-centrosymmetric crystal used for wavelength conversion like in second-harmonic generation (SHG).
The key idea is to demonstrate original strategies to enhance SHG of χ(2) nano-oxides with the material itself and without involving any hybrid effects from other materials such as plasmonic resonances of metals. First, I propose to use multiple Mie resonances from BaTiO3 nanoparticles to boost SHG in the UV to NIR range. Up to now, Mie effects at the nanoscale have been measured in materials with no χ(2) nonlinearities (silicon spheres). Second, since χ(2) oxides are difficult to etch, I will overcome this fabrication issue by demonstrating solution processed imprint lithography to form high-quality photonic crystal cavities from nanoparticles. Third, I will use facet processing of single LiNbO3 nanowire to obtain directionality effects for spectroscopy on-a-chip. This work fosters applications and commercial devices offering a sustainable future to this field.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-STG

See all projects funded under this call

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0