Objective
The existence of a permanent electric dipole moment (EDM) of the neutron, or any subatomic particle, would have far reaching implications connecting particle physics with cosmology. Time reversal invariance and CP symmetry would be violated. A new fundamental interaction producing the EDM, that is, deforming the charge distribution inside the neutron, could also have generated the matter-antimatter asymmetry in the early Universe. After 60 years of evolution, techniques to measure the neutron EDM are now so evolved that experiments are sensitive to microphysics associated with an energy scale beyond that accessible at the LHC. This situation offers a high likelihood of discovery for the next generation of experiments. In the same time, any improvement in precision is technically challenging. The control of the magnetic field must surpass that of the state of the art of atomic magnetometers. The n2EDM project aims at improving the precision by an order of magnitude or more. Systematic effects need to be controlled at an unprecedented level. In particular, the use of a mercury co-magnetometer based on the precession of 199Hg spins induces a set of subtle false effects due to the relativistic motional field.
I propose to initiate a comprehensive program to master these systematic effects beyond the current research program. In particular, the proposed project includes a precise determination of the 199Hg magnetic moment with a precision of 0.1 ppm. To this end, I will attempt a novel approach: combining mercury and 4He magnetometry in the same cell. As a by-product, this will also produce an improved determination of the neutron magnetic moment, a quantity of interest for metrology. The cross-check I propose will prove that all disturbances on the neutron or mercury spins are mastered at the sub-ppm level, a decisive step in the quest for the neutron EDM.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences physical sciences astronomy physical cosmology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
38058 GRENOBLE
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.