Skip to main content

Efficient electronic transport at room temperature by T-shaped molecules in graphene based chemically modified three-terminal nanodevices

Objective

Tmol4TRANS aims to create operative molecular systems that will efficiently be inserted in three-terminal nanodevices to function as transistors at room temperature (RT).
In the front-line of molecular electronics, the implementation of functional nanodevices in present technologies is mainly hampered by crucial unresolved issues like: a) reliability of RT experiments on molecular transistors; b) absence of controlled methodologies to deposit single molecules at specific sites; c) low conductance values and d) difficulties in achieving effective three-terminal devices (BJTs/FETs). Such hindrances involve the nature of the molecules, the absence of controlled deposition methodologies at the nanoscale and the poor stability/contacts between molecules and electrodes.
Stable two-terminal nanodevice based on few-layer graphene and containing a Curcuminoid molecule (CCMoid) that I made has shown reasonable molecular conductance at RT, where the CCMoid anchors to the electrodes by pi-pi stacking. The specific goals of Tmol4TRANS are: 1) to synthesize multifunctional molecules base on “T-shaped” CCMoids and Porphyrin derivatives (PPDs) allowing efficient attachments to electrodes; 2) to fabricate chemically functionalized hybrid graphene transistors; 3) to establish a reliable methodology for positioning the molecules between the electrodes; 4) to investigate the conductance enhancement of the final systems, and 5) to provide the possibility of spin-dependent transport properties by binding such molecules to magnetic metals. Here, the preparation of nanodevices involves feedback-controlled burning technique for the formation of the few-layer graphene electrodes (source/emitter and drain/collector) and the chemical functionalization of the gate/base, where T-shaped molecules will be fixed by click-chemistry. Tmol4TRANS would have a direct impact in Molecular Electronics and Spintronics, as well as in the broader scope of nanoelectronics.

Field of science

  • /engineering and technology/nanotechnology/nano-materials/two-dimensional nanostructures/graphene
  • /social sciences/social and economic geography/transport

Call for proposal

ERC-2016-COG
See other projects for this call

Funding Scheme

ERC-COG - Consolidator Grant

Host institution

AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Address
Calle Serrano 117
28006 Madrid
Spain
Activity type
Research Organisations
EU contribution
€ 1 998 879

Beneficiaries (1)

AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Spain
EU contribution
€ 1 998 879
Address
Calle Serrano 117
28006 Madrid
Activity type
Research Organisations