Objective
More than 3.5 million people are newly diagnosed with heart failure every year in Europe with a long-term prognosis of 50% mortality within 4 years. There is a major need for more innovative, regenerative therapies that have the potential to change the course of disease. My hypothesis is that we can recondition heart failure by stimulating cardiac repair with extracellular vesicles that are derived from progenitor cells. In my laboratory, extracellular released vesicles containing a cocktail of stimulating factors, are amongst the most potent vectors for cardiac repair.
To achieve a sustainable and long-term therapeutic effect of these vesicles and enhance cardiac function by stimulating myocardial repair, we will 1) improve local cardiac delivery of progenitor cell-derived extracellular vesicles, 2) understand the mechanism of action of extracellular vesicles, and 3) stimulate extracellular vesicles release and/or production by progenitor cells.
These questions form the rationale for the current proposal in which we will co-inject extracellular vesicles and slow-release biomaterials into the damaged myocardium. By subsequent genetic tracing, we will determine fate mapping of injected vesicles in vivo, and perform further mechanistic understanding in in vitro culture models of targeted and identified myocardial cell types. Moreover, we will upscale the vesicles production by progenitor cells further via bioreactor culturing and medium-throughput screening on factors that stimulate vesicles release.
The use of stem cell-derived extracellular vesicles to stimulate cardiac repair will potentially allow for an off-the shelf approach, including mechanistic understanding and future clinical use. Additionally, since these vesicles act as a natural carrier system outperforming current artificial drug delivery, we might understand and mimic their characteristics to enhance local (RNA-based) drug delivery systems for cardiovascular application.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental biotechnology bioremediation bioreactors
- social sciences sociology demography mortality
- engineering and technology industrial biotechnology biomaterials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3584 CX Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.