Objective
Precision small animal radiotherapy (RT) research is a young emerging field aiming at unravelling complex in-vivo mechanisms of radiation damage in target and non-target tissues, for translation into improved clinical treatment strategies.
For commonly used X-rays, commercial small animal radiation research platforms were recently developed to provide precision imaged-guided RT comparable to state-of-the-art human treatment. Conversely, such platforms are not yet existing for proton beams, which are increasingly used in RT due to their superior ability to concentrate beam energy in the tumour and spare normal tissue. Pre-clinical research is thus carried out at the few available proton therapy facilities, lacking adequate beam quality and image-guidance for small animal treatment.
To fill this gap, this project will realize and demonstrate the first prototype system for precision small animal proton irradiation at existing experimental beamlines of clinical facilities. Improved beam quality for targeting small structures will be achieved via a dedicated magnetic focusing system. Innovative in-situ image-guidance will combine ion-specific solutions of proton-transmission imaging (for treatment planning) and thermoacoustics (for verification of the beam range) with established ultrasound (for real-time morphological confirmation) and positron-emission-tomography (for functional assessment). The resulting multi-modal “sight” will be used to foster new workflows of treatment adaptation. The system will be thoroughly tested and finally deployed in a first in-vivo study in different orthotopic mouse cancer models, in comparison to reference X-ray RT at a commercial small animal platform.
SIRMIO will deliver the first, compact and cost-effective precision small animal proton irradiator for advancing molecular oncology and animal-based proton RT research, thereby providing new experimental insights in biological in-situ responses towards proton and photon irradiation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology
- natural sciences physical sciences acoustics ultrasound
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.