Objective
Face recognition is a fascinating domain: no other domain seems to present as much value when analysing casual photos; it is one of the few domains in machine learning in which millions of classes are routinely learned; and the trade-off between subtle inter-identity variations and pronounced intra-identity variations forms a unique challenge.
The advent of deep learning has brought machines to what is considered a human level of performance. However, there are many research questions that are left open. At the top most level, we ask two questions: what is unique about faces in comparison to other recognition tasks that also employ deep networks and how can we make the next leap in performance of automatic face recognition?
We consider three domains of research. The first is the study of methods that promote effective transfer learning. This is crucial since all state of the art face recognition methods rely on transfer learning. The second domain is the study of the tradeoffs that govern the optimal utilization of the training data and how the properties of the training data affect the optimal network design. The third domain is the post transfer utilization of the learned deep networks, where given the representations of a pair of face images, we seek to compare them in the most accurate way.
Throughout this proposal, we put an emphasis on theoretical reasoning. I aim to support the developed methods by a theoretical framework that would both justify their usage as well as provide concrete guidelines for using them. My goal of achieving a leap forward in performance through a level of theoretical analysis that is unparalleled in object recognition, makes our research agenda truly high-risk/ high-gains. I have been in the forefront of face recognition for the last 8 years and my lab's recent achievements in deep learning suggest that we will be able to carry out this research. To further support its feasibility, we present very promising initial results.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences artificial intelligence computer vision facial recognition
- natural sciences computer and information sciences artificial intelligence machine learning transfer learning
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69978 Tel Aviv
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.