Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Topological nano-photonics

Objective

One of the most fascinating phenomena in nature is the interplay between quantum mechanics and the flow of electrons in solids. A tangible example is the quantum hall effect, where electrons flow with virtually zero dissipation. That is because electrons can flow only in one direction, which makes them move around objects without scattering, representing robustness by topological protection. Essential for this effect is the magnetic field that breaks time-reversal symmetry.

Recently, however, with the advent of novel exotic quantum materials, completely new concepts for topological and non-reciprocal phenomena have appeared on the horizon, without the need to apply any magnetic field. These materials exhibit intrinsic topological character due to quantum mechanical interferences. TOPONANOP’s vision is to exploit these extraordinary quantum properties in order to control light at the nanoscale in a radically new way. One of the main objectives is to generate nanoscale optical fields (plasmons) that propagate in only one direction and implement topologically protected plasmons such that they move around defects and corners. At the same time, visualizing and controlling electromagnetic excitations will be used as a tool to unravel extraordinary phenomena in exotic quantum materials.

To this end, TOPONANOP will apply novel low-temperature, THz and infrared, near-field imaging and spectroscopy techniques to directly spatially visualize the plasmon non-reciprocity and topological character.
Topological nano-photonics is a new paradigm for novel quantum materials and will enable novel future applications in miniaturized photonic isolators, diodes and logic circuits and could lead to completely new concepts for communication systems, optical transistors and optical information processing.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-COG

See all projects funded under this call

Host institution

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 748 437,00
Address
AVINGUDA CARL FRIEDRICH GAUSS 3
08860 Castelldefels
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 748 437,00

Beneficiaries (1)

My booklet 0 0