Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Towards an active bypass for neural reconnection

Objective

ByAxon is devoted to the development of a new generation of sensors and electrodes based on nanotechnology materials for neural interfacing. We aim to design and build a prototype of an active implant that could work directly at the spinal cord (SC) level. This implant will be primary focused on restoring the transmission of electrical signals in the injured SC, acting as an active local bypass, something not possible with current technology. Further applications might include deep brain stimulation or retinal implants, among others.
Current neural interfacing approaches are based on detecting electric potentials at the brain level, and/or triggering functional electrical stimulation (FES) through electrodes at muscular or SC levels. Important present drawbacks are the large number of cables and electrodes they require and, specially, the lack of sensory feedback. The ultimate non-contact sensing devices (magnetoencephalography) detect magnetic-field pulses generated by potentials at the brain, but require cryogenic temperatures, and, hence, are not portable. We will exploit here the enhanced properties of nanostructured materials to develop improved room temperature magnetoresistance-based high-resolution magnetic sensors. This will allow tackling not only the brain but also the SC directly. We pursuit a novel integrated interface comprising both sensing and stimulation at the SC level. To reach this aim, we will develop FES electrodes of enhanced adhesion and efficiency by using nanowire coatings.
ByAxon is supported by an interdisciplinary consortium, going from material scientists and electronic experts to biologists and clinicians. Our nanotechnology-based approach offers a novel perspective and will be complementary to, but independent from, present neural regenerative techniques. Our technology promises significant outcomes towards the development of an active local bypass and it has the potential to provide much-needed breakthroughs in future neuromedicine.

Call for proposal

H2020-FETOPEN-2016-2017

See other projects for this call

Sub call

H2020-FETOPEN-1-2016-2017

Coordinator

FUNDACION IMDEA NANOCIENCIA
Net EU contribution
€ 1 212 500,00
Address
CALLE FARADAY 9 CIUDAD UNIVERSITARIA DE CANTOBLANCO
28049 Madrid
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Research Organisations
Links
Total cost
€ 1 212 500,00

Participants (7)