Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Algebraic Group Actions in Geometry, Arithmetic, and Physics

Objetivo

"Geometry, arithmetic, and quantum physics historically have had many points of intersection. This project will use recent techniques in algebraic group actions, especially those of Kirwan, to address problems of overlapping interest to distinct research groups at the University of Oxford – Algebraic Geometry, Number Theory, Mathematical Physics, and the Centre for Quantum Mathematics and Computation.

Consider the following long-standing, a priori unrelated, questions. What is the minimal degree curve that passes through n points in general position in the plane (Nagata conjecture)? What is the growth rate of the number of integer lattice points in a variety (for us, universal torsor over a Fano variety) with respect to a height function (Manin conjecture)? How can one work with quantum entanglements of different qualitative character and associated entropies in a rigorous yet
experimentally friendly way?

These open questions turn out to admit a common source, at least in a large class of problems of interest. The crucial
ingredient is a suitable ""homotopic replacement for a universal torsor"" -- arising, in nice cases, from a key difference with topology, since in algebraic geometry algebraic affine line bundles needn't be vector bundles -- that often allows one to reduce to studying a simpler problem in group actions attached to an affine space rather than to a complicated variety or even more complicated universal torsor."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF-EF-ST - Standard EF

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2016

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 195 454,80
Dirección
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Reino Unido

Ver en el mapa

Región
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 195 454,80
Mi folleto 0 0