Objective
Atmospheric Gas-to-Particle conversion (ATM-GTP) is a 5-year project focusing on one of the most critical atmospheric processes relevant to global climate and air quality: the first steps of atmospheric aerosol particle formation and growth. The project will concentrate on the currently lacking environmentally-specific knowledge about the interacting, non-linear, physical and chemical atmospheric processes associated with nano-scale gas-to-particle conversion (GTP). The main scientific objective of ATM-GTP is to create a deep understanding on atmospheric GTP taking place at the sub-5 nm size range, particularly in heavily-polluted Chinese mega cities like Beijing and in pristine environments like Siberia and Nordic high-latitude regions. We also aim to find out how nano-GTM is associated with air quality-climate interactions and feedbacks. We are interested in quantifying the effect of nano-GTP on the COBACC (Continental Biosphere-Aerosol-Cloud-Climate) feedback loop that is important in Arctic and boreal regions. Our approach enables to point out the effective reduction mechanisms of the secondary air pollution by a factor of 5-10 and to make reliable estimates of the global and regional aerosol loads, including anthropogenic and biogenic contributions to these loads. We can estimate the future role of Northern Hemispheric biosphere in reducing the global radiative forcing via the quantified feedbacks. The project is carried out by the world-leading scientist in atmospheric aerosol science, being also one of the founders of terrestrial ecosystem meteorology, together with his research team. The project uses novel infrastructures including SMEAR (Stations Measuring Ecosystem Atmospheric Relations) stations, related modelling platforms and regional data from Russia and China. The work will be carried out in synergy with several national, Nordic and EU research-innovation projects: Finnish Center of Excellence-ATM, Nordic CoE-CRAICC and EU-FP7-BACCHUS.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences atmospheric sciences meteorology biosphera
- engineering and technology environmental engineering air pollution engineering
- natural sciences earth and related environmental sciences environmental sciences pollution
- natural sciences biological sciences ecology ecosystems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00014 HELSINGIN YLIOPISTO
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.