Objective
Twenty years of research in magnetocaloric materials has failed to provide the necessary breakthrough that will lead to a commercial realisation of this technology and satisfy the urgent global need for more efficient refrigeration. We strongly believe that this is a result of looking in the wrong direction. The cool innov project will achieve this breakthrough by rethinking the whole concept of caloric cooling. We are rejecting the conventional idea of squeezing the best out of magneto-structural phase-change materials in relatively low magnetic fields, and instead we introduce a second stimulus in the form of pressure so that we can exploit, rather than avoid, the hysteresis that is inherent in these materials. The hysteresis will allow us to lock-in the magnetisation at saturation as the magnetising field is removed, so that magnetic fields persisting over a large area will no longer be required (instead, we can use a very focused field), and then demagnetise the material in a second step with an applied stress, enabling us to extract a lot more heat. In this case we only need to apply the magnetic field to a small volume of material, making it a completely new application for commercially available, high-temperature, YBCO-type, bulk superconducting permanent magnets. With the high-field, multi-stimuli approach proven, we will develop new magneto/mechanocaloric materials that match the new high-field, hysteresis-positive approach and start to fabricate novel heat-exchanger structures using additive manufacturing, so that we can combine a mechanically sound heat exchanger having a complex geometry with locally tailored, magneto/mechanocaloric properties. The success of cool innov will be game changing. We are being very ambitious in targeting a revolution in cooling technology, but if we succeed, we will have a huge impact on global energy consumption through greater efficiency, thanks to the novel energy materials that will be discovered within cool innov.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering thermodynamic engineering
- social sciences political sciences political transitions revolutions
- natural sciences mathematics pure mathematics geometry
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
64289 DARMSTADT
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.