Objective
Two-dimensional (2D) materials such as graphene and transition metal dichalcogenide monolayers receive a tremendous amount of attention because of their extraordinary properties and application potential. Electron-phonon interactions, which couple the electronic and lattice vibrational degrees of freedom in solids, affect a wide range of material properties, for example lattice stability and carrier mobility. Importantly, the strength of electron-phonon interactions in 2D materials can be tuned to a significant extent by electric field doping and elastic deformation, opening up the possibility of rational engineering of electron-phonon interactions in 2D materials.
This project aims to employ the state-of-the-art first-principles methodologies developed in the host’s group, to study the electron-phonon interactions, lattice stabilities and carrier mobilities of 2D materials under different external conditions. Density functional perturbation theory and electron-phonon couplings based on Wannier functions will be used to characterize the electron-phonon coupling strengths, Fermi surface topologies and electronic susceptibilities of 2D transition metal dichalcogenides as a function of charge doping. The doping dependence of lattice and phase stability will be investigated. We will also employ the fully self-consistent first-principles Boltzmann transport approach being developed in the host’s group, to study the phonon-limited carrier mobilities of 2D transition metal dichalcogenides as a function of temperature, elastic strain and charge doping. The fundamental mechanisms limiting the charge mobilities of 2D materials and the strategies to enhance them will be studied. The insights gained within this project could provide valuable design principles for next-generation electronic, electromechanical and phase change devices based on 2D materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics optoelectronics
- natural sciences mathematics pure mathematics topology
- natural sciences physical sciences atomic physics
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.