Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Cooper pair splitter based on Dirac materials

Objective

Cooper pairs splitters (CPS) are promising candidate devices for solid-state sources of spin entanglement; a long-sought goal of outstanding impact in the development of quantum technologies. Recent experiments have reported high splitting efficiencies but measurements can not resolve individual splitting events and are limited to time-averaged current and noise.
In this project, I will go beyond existing proposals for CPS devices exploring the regime of a single or a few emitted pairs by exploiting the unique transport properties of Dirac materials (DM). The electronic states in DM have long coherence lengths comparable to the typical device size and are protected by symmetry against material imperfections, allowing us to use them as ideal single-channel electron guides. First, I will employ Green’s function techniques adapted to Dirac systems to develop a new formulation of the Full Counting Statistics (FCS) of junctions between DM and superconductors. FCS provides more information about a particular system than just the mean current or noise. Further, by characterizing the Waiting Time Distribution (WTD) between two subsequent charge transfers, the short-time physics of these junctions can be understood. I will develop this novel theory to study the possible synchronized detection of individual electrons from a split Cooper pair. The WTD theory for superconducting hybrids remains almost completely unexplored; therefore, this project fills a knowledge gap, which is crucial for the development of future quantum technologies. Importantly, the theoretical framework developed in this project can be immediately applied to study engineered topological superconductivity and to simulate graphene-based CPS devices, currently under experimental development at Aalto University. As a result, this proposal will yield valuable information about entanglement generation in solid-state devices, advancing the fields of spintronics and quantum information technologies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

AALTO KORKEAKOULUSAATIO SR
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 179 325,60
Address
OTAKAARI 1
02150 Espoo
Finland

See on map

Region
Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 179 325,60
My booklet 0 0