Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Quantum Energy Conditions and Singularity Theorems

Objective

The proposed project explores an important open question in mathematical physics today: the occurrence of singularities in spacetime - places where the usual understanding of physics breaks down. For example, singularities may exist at the center of black holes, or have occurred at the beginning of the universe. Singularity theorems, developed over the past 50 years following pioneering work of Penrose and Hawking, are mathematically rigorous results that imply that singularities are inevitable provided the matter content of the universe obeys a suitable energy conditions. Although forms of matter described by quantum field theory can violate the original energy conditions, recent developments provide hope that singularity theorems can be proved even in this case. To date, however, no known singularity theorem fully corresponds to the behaviour of quantum fields or takes into account the backreaction of the quantum field on the spacetime. The goal of this project is to establish singularity theorems for quantised matter using recent work by the researcher and the supervisor as a base. This will be approached in several ways (a) new quantum energy inequalities will be proved that are suitable for use in singularity theorems; (b) new singularity theorems will be proved using a transversely smeared version of the averaged null energy condition; (c) analogues of singularity theorems will be investigated in the context of semiclassical gravity. The combination of the complementary expertise of the researcher and the supervisor is essential to the success of this project. Moreover the researcher will receive training from the supervisor in mathematically rigorous approaches to quantum field theory and relativity, which will broaden her knowledge and expertise. This project will help to resolve a major problem in mathematical physics today and provide insight into how the universe works.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

UNIVERSITY OF YORK
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
HESLINGTON
YO10 5DD YORK NORTH YORKSHIRE
United Kingdom

See on map

Region
Yorkshire and the Humber North Yorkshire York
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0