Objective
The computation of dynamical properties (both equilibrium and non-equilibrium) of interacting quantum systems is one of the foremost challenges in contemporary condensed matter theory. Such computations can describe experiments in cold atomic gases, as well as a diverse range of probes in solid-state systems (e.g. inelastic neutron scattering, ARPES, RIXS). The aim of this proposal is to develop a theoretical framework for the study of dynamical properties of two-component quantum gases (TCQGs), systems that are both ubiquitous and under active experimental investigation. This objective will be achieved in four major steps.
1. Development of a non-perturbative computational algorithm for integrable TCQGs. Exact results from integrability will be combined with efficient numerical routines to evaluate correlation functions. This will enable the study of large systems, beyond the reach of existing techniques.
2. The algorithm will be used to study equilibrium dynamics (spectral functions and dynamical structure factors); results will be compared to predictions from field theory techniques, such as the non-linear Luttinger liquid, and links made to experiments. Analytical study of the attractive gas will examine the role of multiple species of bound states.
3. The non-equilibrium dynamics of TCQGs following a quantum quench will be studied. Numerical results will be combined with analytical insights from the Quench Action framework. Scenarios with no analog in a single-component gas will be accessible, opening a door to new and interesting experimentally accessible physics.
4. A numerical framework to treat non-integrable TCQGs will be developed. Using eigenstates of a proximate integrable point as a computational basis, well-tested numerical techniques such as the truncated conformal space approach and the Chebyshev expansion will perform time-evolution with non-integrable Hamiltonians, enabling direct links to on-going experiments in cold atomic gases.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences quantum physics
- natural sciences physical sciences atomic physics
- natural sciences computer and information sciences computational science
- natural sciences physical sciences condensed matter physics quantum gases
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-RI - RI – Reintegration panel
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1012WX Amsterdam
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.