Objective
Understanding how quantum effects can improve the performance of actual computing devices is an exciting and growing research area. However their role in neural networks (NNs), the complementary information process paradigm of classical computation is largely unexplored. The full translation of this paradigm at the quantum level ultimately requires to combine disordered spin-systems techniques, widely used in the study of classical NNs, together with the open quantum systems (OQSs) framework, in order to achieve their irreversible and non-linear dynamics. HopeQNet is the first step of an ambitious program that will lead, in a long term effort, to a new generation of quantum computing architectures, and is designed to deliver a first initial theoretical framework to investigate quantum effects in NNs, by considering the open quantum generalization of one of the most celebrated paradigms of NNs, the Hopfield model. This workhorse model will be simple and rich enough to: (i) apply well-developed tools from the theory of OQSs and establish a meaningful framework for a quantum NN; (ii) evaluate the potential gain due to quantum effects in this specific quantum NN architecture; (iii) engineering and modeling a proof-of-principle experiment of a Rydberg quantum simulator implementing it.
HopeQNet combines the knowledge of the Applicant, who pioneered the use of disordered spin-systems in quantum many-body optical systems during his PhD (and will provide to the Host this unique expertise), together with the internationally recognized experience of the Supervisor in open quantum many-body systems and Rydberg atoms (who will mentor the Applicant throughout the training-through-research activity proposed here). This interdisciplinary combination of expertise is uniquely suited to carry out this first step of an ambitious 5-to-10 years program that will lead the Applicant to join one of the major EU institution working on quantum theory as an independent scientist.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences quantum physics
- natural sciences computer and information sciences artificial intelligence computer vision
- natural sciences computer and information sciences artificial intelligence machine learning
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
NG7 2RD Nottingham
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.