Objective In polymer electrolyte fuel cells (PEFCs), the commonly used catalysts are still carbon supported Pt-based nanoparticles (Pt/C), which undesirably increases the overall cost of the system. To address this challenge, advanced non-precious group metal (NPGM) catalysts have been endeavoured due to their potential low cost and high CO tolerance. Although rapid progress has been achieved in recent years, the poor activity and stability of NPGM catalysts can still not compete with the conventional Pt/C catalysts. In CoordPEFC, inspired by the excellent catalytic activities of nitrogen-containing transitional metal complexes (MCs) and the unique porosity and stability of porous coordination polymers (PCPs), we’ll develop highly active and stable MC-PCP couplers, and hybrid with highly electro conductive carbon allotropes to achieve low-cost, active site enriched and durable PEFC electrocatalysts, through a further understanding of enhanced mechanisms between MCs, nitrogen containing groups, PCP and carbon allotropes. CoordPEFC will involve careful screening of N-based ligands coordinated with Fe/Co MCs and clubbing with suitable metal (e.g. Zr/Cr/Al) containing PCPs. The as-prepared MC-PCPs/C electrocatalysts will be evaluated by ex-situ rotating disk electrode (RDE) measurement and in-situ single cell testing. Long-term durability diagnosis will be performed under real life-context at different European and international automotive driving cycles with industrial partner Amalyst Ltd and compared with the commercial Pt/C catalysts. It's expected a further understanding of the coordinated N active sites and transitional metals will be achieved to predict the catalytic activities of new NPGM catalyst system for PEFC applications. Fields of science natural scienceschemical sciencescatalysiselectrocatalysisnatural scienceschemical sciencespolymer sciencesengineering and technologynanotechnologynano-materialsengineering and technologyenvironmental engineeringenergy and fuelsfuel cells Keywords Polymer Electrolyte Fuel Cells Electrocatalyst Non-precious Catalyst Porous Coordination Polymer Metal Complex Carbon Allotropes Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2016 - Individual Fellowships Call for proposal H2020-MSCA-IF-2016 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator THE UNIVERSITY OF BIRMINGHAM Net EU contribution € 183 454,80 Address Edgbaston B15 2TT Birmingham United Kingdom See on map Region West Midlands (England) West Midlands Birmingham Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00